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Abstract. Let k be a non-Archimedean field which is discretely and non triv-
ially valued. We prove that the complementary set of the image of a morphism
between strictly k-affinoid spaces has finitely many connected components and
that this property holds more generally for finite Boolean combinations of such
images. This happens to be a consequence of a more general result for suban-
alytic sets (as they have been defined by Leonard Lipshitz): we show that if S
is a subanalytic set of some strictly k-affinoid space, then it has finitely many
connected components.
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1. Introduction

Let k be a non-Archimedean field which is discretely and non-trivially valued. In
non-Archimedean geometry one of the advantages of Berkovich spaces, also called
k-analytic spaces [Ber90, Ber93, Duc07], is to offer some genuine topological spaces,
with good topological properties (locally arcwise-connected, locally compact, etc)
which is not possible in the formalism of rigid spaces (which are equipped with a
Grothendieck topology instead [BGR84]) or in the formalism of formal schemes.

Building blocks of k-analytic spaces are k-affinoid spaces. It is well known that k-
affinoid spaces have finitely many connected components, for instance because they
are compact and locally connected spaces. As a consequence, if f : Y → X is a
morphism of k-affinoid spaces, f(Y ) ⊂ X has finitely many connected components.

But let us consider a morphism of strictly k-affinoid spaces f : Y → X. One could
wonder if the complementary set f(Y )c has finitely many connected components.
We do not see any obvious reason for this: for a general X, there are many compact
sets S ⊂ X whose complementary set has infinitely many connected components.
For instance, if one takes X = B the closed unit disc and S = {η} where η is the
Gauss point of B, then X \{η} has infinitely many connected components. Though,
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the answer the the above question is yes, and we prove more generally the following
result.

Proposition 1.1. Let X be a strictly k-affinoid space. Let S ⊂ X be a finite
Boolean combination of subsets of the form f(Y ) where f : Y → X is a morphism
of strictly k-affinoid spaces. Then S has finitely many connected components and
each of them is path-connected.

In fact this is just a particular case of the following result. A special k◦-algebra
is a quotient of some k◦〈X1, . . . , Xm〉[[ρ1, . . . , ρn]].

Theorem 1.2. Let A be a special k◦-algebra, X := Spf(A) and let S ⊂ Xη be a
subanalytic set. Then S has finitely many connected components and each of them
is path-connected.

The proof of Theorem 1.2 relies on two results results.
The first one is the quantifier elimination theorem for subanalytic sets due to

Leonard Lipshitz and Zachary Robinson [Lip93, Theorem 3.8.1] and [LR00a, Corol-
lary 4.3]. However, in order to use this theorem, we have to explain [Mar13, 3.1.1]
why subanalytic sets make perfect sense in the context of Berkovich spaces.

The second result is that if A is a special k◦-algebra which is a domain, and
X = Spf(A) is the associated formal scheme over Spf(k◦), then Xη, the k-analytic
space attached to X, is irreducible. This result is due to Brian Conrad [Con99,
Theorem 2.3.1] and relies itself on a theorem due to Aise Johan de Jong [dJ95,
Theorem 7.4.1].

Remark 1.3. Theorem 1.2 has strong connections with Antoine Ducros result [Duc03,
Theorem 3.2], which asserts that semi-algebraic sets have finitely many connected
components. In particular, if we assume that X,Y and f are defined by polynomi-
als, Proposition 1.1 is a consequence of Ducros result.

Let us also mention the recent work of Ehud Hrushovski and Françcois Loeser
[HL10] which implies much stronger topological tameness properties for k-analytic
spaces defined by algebraic conditions.

Organization of the paper. In section 2 we recall the main results concerning
subanalytic sets that we will need. In particular, in Remark 2.14 we explain why
Theorem 1.2 implies Proposition 1.1. In section 3 we prove Theorem 1.2.

Notations. If K is a non-Archimedean field we will set

K◦ = {x ∈ K
∣∣ |x| ≤ 1}.

K◦◦ = {x ∈ K
∣∣ |x| < 1}.

In this text, k-analytic space refers to the spaces defined by Vladimir Berkovich in
[Ber90, Ber93]. We will denote by B the closed unit disc over k (seen as a k-analytic
space), and D the open unit disc over k (seen as a k-analytic space).

2. Subanalytic sets

2.1. Special formal schemes. Let k◦〈X1, . . . , Xm〉 be the set of power series∑
ν∈Nn aνX

ν such that aν ∈ k◦ and |aν | → 0. Let π be some uniformizer of k. We
consider k◦〈X1, . . . , Xm〉[[ρ1, . . . , ρn]] as an adic algebra, with (π, ρ1, . . . , ρn) as an
ideal of definition.
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Definition 2.1. [Ber96a, section 1] A special k◦-algebra is an adic algebra which
is a quotient of some k◦〈X1, . . . , Xm〉[[ρ1, . . . , ρn]]. In that case, we call X = Spf(A)
a special formal scheme.

Let A be a special k◦-algebra, and let X := Spf(A), the Spf(k◦)-formal scheme
associated to A. We denote by Xη the k-analytic space associated to X (see [Ber96a,
Section 1]). If A = k◦〈X1, . . . , Xm〉[[ρ1, . . . , ρn]]/I where I is an ideal of A, by
definition, Xη is isomorphic to the closed analytic subset of Bm×Dn defined by the
ideal I, that is to say, Xη = {x ∈ Bm × Dn

∣∣ f(x) = 0 ∀f ∈ I}. For instance,
Spf(k◦〈X〉)η ' B and Spf(k◦[[ρ]])η ' D.

More generally,

Spf
(
k◦〈X1, . . . , Xm〉[[ρ1, . . . , ρn]]

)
η
' Bm × Dn.

Beware that the product × above is intended as a product in the category of k-
analytic spaces. In particular, Bm×Dn is not the set theoretical product of Bm and
Dn. Note that Xη can be defined in an more intrinsic way, and is independent of
the presentation of A as k◦〈X1, . . . , Xm〉[[ρ1, . . . , ρn]]/I. See [dJ95, 7.1] or [Ber96b,
0.2.6] for more on this.

Definition 2.2. Let A be a special k◦-algebra, and let X = Spf(A).
(1) Let I ⊂ A be some ideal. We set

V (I) = {x ∈ Xη
∣∣ f(x) = 0 ∀f ∈ I}.

V (I) is a closed analytic set of Xη.
(2) We say that a set Z ⊂ Xη is constructible if it is a finite Boolean combina-

tion of some V (I)’s.

Remark 2.3. (1) There is a natural morphism of k-algebras

k ⊗k◦ A→ Γ(Xη,OXη ).

Its image clearly goes to the set of bounded analytic functions on Xη. So
in general, this morphism is far from being surjective precisely because in
general there exist some analytic functions on Xη which are unbounded.
But if A is a quotient of k◦〈X1, . . . , Xm〉, this is an isomorphism.

(2) If A is normal, A.J. de Jong has proved [dJ95, 7.4.1] that with the above
morphism, A identifies with the set of analytic functions f on Xη such that
|f(x)| ≤ 1 for all x ∈ Xη.

(3) De Jong’s result actually implies that if A is reduced, k⊗k◦ A is isomorphic
to the sets of bounded analytic functions on Xη (see [Mar13, 0.5.3] for
a proof of this result which has been communicated to us by Christian
Kappen).

2.2. Analytic Quantifier elimination Theorem. We assume some basic knowl-
edge of model theory: languages, terms, structures and quantifier elimination. See
for instance [Mar00, Chapter 1]

The language. We define LDan, a three-sorted language. Its sorts are: O,m and
Γ0. On O and m there are function symbols +,−, · and there is a function sym-
bol · on Γ0. On Γ0, there is a relation symbol < and a constant 0. There are
function symbols D0 : O2 → O, D1 : O2 → m, | · | : O → Γ0 and for each
f ∈ k◦〈X1, . . . , Xm〉[[ρ1, . . . , ρn]], there is a function symbol f : Om × mn → O.
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If in addition f ∈ (π, ρ)k◦〈X1, . . . , Xm〉[[ρ1, . . . , ρn]], there is a function symbol
f : Om×mn → m. By definition of a term in a language, an LDan-term is everything
that can be built using composition of these symbols.

The standard structures. Let k → K be some non-Archimedean extension. We can
associate to K a standard LDan-structure as follows. (O,+,−, .) is interpreted as
(K◦,+,−, .), (m,+,−, .) is interpreted as (K◦◦,+,−, .) and (Γ0, <, .) is interpreted
as (|K|, <, .). Symbol functions f ∈ k◦〈X1, . . . , Xm〉[[ρ1, . . . , ρn]] are naturally in-
terpreted as functions f : (K◦)m× (K◦◦)n → K◦. Indeed, f is a power series which
converges on (K◦)m × (K◦◦)n and its norm is bounded by 1. Finally, D0 and D1

are interpreted as follows:
D0 : (K◦)2 → K◦

(x, y) 7→

{
x
y if |x| ≤ |y| 6= 0

0 otherwise
D1 : (K◦)2 → K◦◦

(x, y) 7→

{
x
y if |x| < |y|
0 otherwise

.

For short we will denote this structure by K instead of (K◦,K◦◦, |K|).

Theorem 2.4. [Lip93, 3.8.1] and [LR00a, 4.3]. Let ϕ be a first order LDan-formula.
There exists ψ a quantifier free LDan-formula such that for all algebraically closed
non-Archimedean extension k → K

K |= (ϕ⇔ ψ).

Remark 2.5. (1) Another way to state the above theorem is to say that if
k → K is an algebraically closed non-Archimedean extension, the stan-
dard structure associated to K has quantifier elimination, and moreover
that if k → K → L are two algebraically closed non-Archimedean exten-
sions, then (K◦,K◦◦, |K|) → (L◦, L◦◦, |L|) is an elementary extension, in
the sense of model theory (see [Mar00, 2.3.1]).

(2) In [LR00a, 4.3], the above result is in fact stated for any non-Archimedean
field k (k = Cp for instance), in particular not necessarily discretely valued.
In this general setting, the above formalism has to be changed. For instance,
if k = Cp, one should note consider the rings C◦p〈X1, . . . , Xm〉[[ρ1, . . . , ρn]]
which are not tame enough. Indeed, as explained in [LR00b, p.6-7], there
are some power series f ∈ C◦p[[ρ1]] whose vanishing locus in D is an infinite
countable discrete set, which thereby will have infinetely many connected
componnents. So when k is not necessarily discretely valued, one has to
introduce some news rings called S◦m,n(E, k)(see [LR00b, 2.1.1]), where k is
our non-Archimedean base field, and E ⊂ k is a discrete valuation subring of
k. These rings S◦m,n(E, k) will play the role of k◦〈X1, . . . , Xm〉[[ρ1, . . . , ρn]]
in the above theorem.

(3) According to [LR00b, Theorem 2.1.3 (i)], when k is dicretely valued, S◦m,n(k◦, k) =
k◦〈X1, . . . , Xm〉[[ρ1, . . . , ρn]]. Consequently, the above theorem is just an
instance of [LR00a, Corollary 4.3] for the choice Sm,n(k◦, k).

2.3. Subanalytic sets in the Berkovich setting. In this section, we explain
how we can make sense of subanalytic sets in Berkovich poydiscs, and how the
quantifier elimination Theorem 2.4 can be interpreted in this context.
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Definition 2.6. Let k → K be some non-Archimedean extension and n ∈ N. We
associate to it a natural map pK : Kn → An,ank . It sends a point a ∈ Kn to the
multiplicative seminorm

P ∈ k[X1, . . . , Xn] 7→ |P (a)|K
where | · |K refers to the norm on K. In our context, if m ∈ N, we will also denote
by pK the induced map pK : (K◦)m × (K◦◦)n → Bm × Dn. If m,m′ are integers,
we will use freely that the following diagram commutes

Km+m′ pK //

pr

��

Am+m′,an
k

pr

��
Km pK // Am,ank

where pr : Km+m′ → K and pr : Am+m′,an
k → Am,ank are the natural coordinate

projections (we should have given to them two different names).

Lemma 2.7. Let f : Om×mn → O be an LDan-term. Let z ∈ Bm×Dn. Let k → K
and k → L be two non-Archimedean extensions and let a ∈ (K◦)m × (K◦◦)n,
b ∈ (L◦)m × (L◦◦)n such that pK(a) = z = pL(b). Then

|f(a)| = |f(b)|
where the left (resp. right) hand-side is interpreted in the LDan-structure K (resp.
L).

Proof. The coordinates functions on Bm×Dn allow us to associate to z ∈ Bm×Dn
a tuple z ∈ (H(z)◦)m×(H(z)◦◦)n. By the definition of the completed residue fields,
there are unique non-Archimedean extensions

K

H(z)

ιK

==

ιL
!!
L

such that ιK sends z to a and ιL sends z to b. This implies that |f(z)| = |f(a)| and
that |f(z)| = |f(b)|. �

Definition 2.8. Let f : Om × mn → O be an LDan-term and z ∈ Bm × Dn. We
denote by |f(z)| the real number defined above.

Definition 2.9. A set S ⊂ Bm×Dn is subanalytic if it is a finite Boolean combina-
tion of sets of the form {x ∈ Bm×Dn

∣∣ |f(x)| ≤ |g(x)|} where f, g : Om×mn → O
are LDan-terms.

Remark 2.10. By definition of the language LDan, a quantifier free LDan-formula
ϕ(x1, . . . , xm, ρ1, . . . , ρn) is a finite Boolean combination of formulas |f | ≤ |g| where
f, g : Om × mn → O are LDan-terms. Hence, to such formula, one can associate a
subanalytic set. If one wants to, one can say that we are facing a homomorphism
of Boolean algebras.
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Remark 2.11. Let f, g : Om×mn → O be some LDan-terms. The subsets of Bm×Dn
defined by the conditions {|f | < |g|}, {|f | = |g|}, {f 6= 0}, {f = 0} are subanalytic.
For the first one, take the complementary set of {|g| ≤ |f |}, and for the last one,
remark that {f = 0} = {|f | ≤ |0|}. Moreover, if X is a k-affinoid space defined as
the vanishing locus in Bm of some functions f1, . . . , fN ∈ k◦〈X1, . . . , Xm〉, then X
corresponds to the subanalytic set of Bn

S =
∧

i=1...N

{fi = 0}.

Lemma 2.12. Let S ⊂ Bm+m′ × Dn+n′ be a subanalytic set and let

pr : Bm+m′ × Dn+n
′
→ Bm × Dn

be the coordinate projection. Then pr(S) is a subanalytic set of Bm × Dn.

Proof. Let ϕ = ϕ(x1, . . . , xm+m′ , ρ1, . . . , ρn+n′) be some quantifier free LDan-formula
defining S as in Remark 2.10. Let ψ = ψ(x1, . . . , xm, ρ1, . . . , ρn) be some quantifier
free LDan-formula equivalent, in the sense of Theorem 2.4, to the formula

∃xm+1, . . . , xm+m′ ∈ O ∃ρn+1, . . . ρn+n′ ∈ m. ϕ(x1, . . . , xm+m′ , ρ1, . . . , ρn+n′).

Let T ⊂ Bm × Dn be the subanalytic set attached to ψ as in Remark 2.10. We
claim that T = pr(S).
pr(S) ⊂ T . Let x ∈ pr(S) and let y ∈ S be some preimage of x. Let k → K

be some non-Archimedean extension and b ∈ (K◦)m+m′ × (K◦◦)n+n
′
such that

pK(b) = y. It follows that K |= ϕ(b). Let then a ∈ (K◦)m × (K◦◦)n be the
projection of b on (K◦)m × (K◦◦)n. Then pK(a) = x. In addition, ψ, K |= ψ(a).
Hence by definition of ψ, K |= ϕ(b), and x ∈ T . Here is a diagram with the involved
elements.

b ∈ (K◦)m+m′ × (K◦◦)n+n
′ pK //

pr

��

Bm+m′ × Dn+n′ ⊃ S 3 y

pr

��
a ∈ (K◦)m × (K◦◦)n

pK // Bm × Dn 3 x

T ⊂ pr(S). Let x ∈ T . Let k → K be some non-Archimedean extension and
let a ∈ (K◦)m × (K◦◦)n such that pK(a) = x. Then (still using Lemma 2.7)
K |= ϕ(a). Hence by definition of ϕ, there exists some b ∈ (K◦)m+m′ × (K◦◦)n+n

′

which projects to a ∈ (K◦)m × (K◦◦)n such that K |= ψ(b). So if y := pK(b), then
y ∈ S. In addition, p(y) = x. �

Definition 2.13. Let X = Spf(A) be a special formal scheme whereA = k◦〈X1, . . . , Xm〉[[ρ1, . . . , ρn]]/I,
and let us consider the associated embedding Xη ⊂ Bm ×Dn. Then Xη is a suban-
alytic set of Bm × Dn. We say that S ⊂ Xη is a subanalytic set of Xη when it is
subanalytic in Bm × Dn. In particular, if X is a k-affinoid space, we can see it as
some Xη, and we say that S ⊂ X is subanalytic if it fulfills the above condition.

It is easy to check that this definition does not depend on the chosen presentation
of A.

Remark 2.14. According to the above Lemma 2.12, and remark 2.11, we know that
the image of a morphism of k-affinoid spaces can be described as a subanalytic
set. Indeed, if X ⊂ Bm and Y ⊂ Bm′ are affinoid spaces and f : X → Y is a
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morphism of affinoid spaces, then the graph of f , is a subanalytic set of Bm+m′ and
its projection on the last m′ coordinates is then a subanalytic set. So Theorem 1.2
implies Proposition 1.1 because the class of subanalytic sets is by definition stable
under complement and because any k-affinoid space is isomorphic to some Xη.

Remark 2.15. More generally, let X be a locally Noetherian Spf(k◦) adic formal
scheme spanned by some Spf(A)’s where the A’s are special k◦-algebras. With the
notations of [dJ95, 7.0.1] and [Con99], this means that X ∈ FSk◦ . We say that
S ⊂ Xη is subanalytic if for all formal open affine U ⊂ X, S ∩ Uη is subanalytic in
Uη. Then if ϕ : X → Y is a morphism between two Noehterian formal scheme of
FSk◦ , and S is a subanalytic set of Xη, then ϕη(S) is a subanalytic set of Yη. In
addition, Theorem 1.2 holds for Noetherian formal schemes X ∈FSk◦ .

2.4. A geometric approach.

2.4.1. Generalized ring of fractions. Generalized ring of fractions have been intro-
duced in [LR00a, section 2]. In this section, we expose this notion of generalized
ring of fractions in the context of k-analytic spaces.

Definition 2.16. Let A be a special k◦-algebra, and let f, g ∈ A. We set

A〈f/g〉 = A〈X〉/(f −Xg).

A[[f/g]] = A[[ρ]]/(f − ρg).

Definition 2.17. A generalized ring of fractions over A is the datum of a certain
morphism of special k◦-algebras ϕ : A→ B (we set X = Spf(A), Y = Spf(B)) and
of a subset Dom(A) ⊂ Yη, defined inductively as follows.

− The identity morphism id : A → A is a generalized ring of fractions and
Dom(A) = Xη.

− Let ϕ : A→ B be a generalized ring of fractions and let f, g ∈ B.
– Let ϕ1 : B → B〈f/g〉 be the canonical morphism of special k◦-

algebras. The composition ϕ1 ◦ ϕ : A→ B → B〈f/g〉 is a generalized
ring of fractions and

Dom(B〈f/g〉) = {x ∈ (ϕ1)−1η
(
Dom(B)

) ∣∣ g(x) 6= 0}.
– Let ϕ2 : B → B[[f/g]] be the canonical morphism of special k◦-

algebras. The composition ϕ2 ◦ϕ : A→ B → B[[f/g]] is a generalized
ring of fractions and

Dom(B[[f/g]]) = {x ∈ (ϕ2)−1η
(
Dom(B)

) ∣∣ g(x) 6= 0}.

Remark 2.18. Let f, f ∈ A and A → A〈f/g〉 be the associated generalized ring of
fractions. Then Dom(A〈f/g〉) is the analytic domain {g 6= 0} and the associated
map Spf(A〈f/g〉)η → Spf(A)η induces an isomorphism of k-analytic spaces between
Dom(A〈f/g〉) and the analytic domain of Spf(A)η defined by {|f | ≤ |g| 6= 0}.
This follows from the simple fact that when g 6= 0, in Spf(A〈f/g〉)η, the equation
f −Xg = 0 implies implies that |f | ≤ |g|, because the variable X satisfies |X| ≤ 1.

Likewise, the morphism of k-analytic spaces Spf(A[[f/g]])η → Spf(A)η induces
an isomorphism of k-analytic spaces between Dom(A[[f/g]]) and the analytic do-
main of Spf(A)η defined by {|f | < |g|}, because in Spf(A[[f/g]])η, |ρ| < 1.

Lemma 2.19. Let ϕ : A → B be a generalized ring of fractions, X = Spf(A),
Y = Spf(B) . Then
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(1) Dom(B) is an admissible open subset of Yη, which is the complementary
set of some closed analytic subset V (I) defined by some ideal I ⊂ B.

(2) ϕη identifies Dom(B) with an admissible open set of Xη.

Proof. The proof is a straightforward induction using the above remark. �

In the rest of the text, we will always assimilate Dom(B) with an admissible
open set of either Xη or Yη, accordingly to Lemma 2.19 (2).

Remark 2.20. The definition of a generalized ring of fractions and of its domain is
a little imprecise. As we have defined it, the definition of Dom(B) depends on a
sequence

A = A0 → A1 → · · · → An

where each Ai → Ai+1 is given by

Ai+1 = Ai〈fi/gi〉
or

Ai+1 = Ai[[fi/gi]]

for some fi, gi ∈ Ai. However it can be proved that if ϕ : A→ B and ϕ′ : A→ B′

are generalized rings of fractions such that there exists an isomorphism ψ : B → B′

of A-algebras, then Dom(B) = Dom(B′). As pointed out in [LR00a, remark 2.3
(i)], one way to see this is to remark that if ϕ : A → B is a generalized ring of
fractions, then Dom(B) ⊂ Xη is the set of points x ∈ Xη such that there exists an
affinoid domain U ⊂ Xη which contains x and such that ϕη induces an isomorphism
between U and (ϕη)−1(U).

2.4.2. Back to subanalytic sets. The reason why we have introduced generalized
ring of fractions is the following fact, which gives a more geometric description of
subanalytic sets.

Proposition 2.21. Let S ⊂ Bm × Dn be a subanalytic set. Then there exists a
finite number of generalized ring of fractions

ϕi : k◦〈X1, . . . , Xm〉[[ρ1, . . . , ρn]]→ Ai for i = 1 . . . n

and for each i, a constructible subset Zi ⊂ (Xi)η (where Xi = Spf(Ai)) such that

Sη =

n⋃
i=1

(ϕi)η(Dom(Ai) ∩ Zi).

The proof relies on the following lemma.

Lemma 2.22. Let f : Om × mn → O be an LDan-term. Then there exists a finite
number of generalized rings of fractions

ϕi : k◦〈X1, . . . , Xm〉[[ρ1, . . . , ρn]]→ Ai for i = 1 . . . n

and for each i, some closed analytic set V (Ji) of (Xi)η, and some function fi ∈ Ai
such that, if we set Zi = (ϕi)η(Dom(Ai) ∩ V (Ji))

(1)
Bm × Dn =

⋃
i=1...n

Zi.

(2) For each i,

((ϕi)an))∗(f|Zi) = (fi)|Dom(Ai)∩V (Ji).
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Proof. The proof is a straightforward induction on the (inductive) definition of the
LDan-term f . �

Proof. (of Proposition 2.21) Step 1. Using the definition of a subanalytic set and
the previous lemma, we can prove that there exists a finite number of generalized
ring of fractions

ϕi : k◦〈X1, . . . , Xm〉[[ρ1, . . . , ρn]]→ Ai for i = 1 . . . n

and for each i a subset Ti ⊂ Xiη which is finite Boolean combination of inequalities
{|f | ≤ |g|} where f, g ∈ Ai, such that

S =

n⋃
i=1

(ϕi)η(Dom(Ai) ∩ Ti).

Step 2. We start by a remark. Let C be a special k◦-algebra, f, g ∈ C, and let
us consider the set T of Spf(C)η defined by {|f | ≤ |g|}. Let us introduce the
generalized ring of fractions C ′ = C〈f/g〉. Then T = Dom(C ′) ∪ V (f, g).

In the same way, if we consider the set T of Spf(C)η defined by {|f | < |g|}, and
if we introduce the generalized ring of fractions C ′ = C[[f/g]], then T = Dom(C ′).

With the step 1, these two remarks and an induction conclude the proof. �

3. Proof of Theorem 1.2

The following result is due to B. Conrad, but for the convenience of the reader,
we reproduce his proof.

Theorem 3.1. [Con99, Theorem 2.3.1] Let A be a special k◦-algebra which is a
domain, and X := Spf(A). Then Xη is an irreducible k-analytic space.

Proof. Since A is excellent [Val75, Val76], replacing A by its normalization, we can
assume that A is a normal domain. It then follows that Xη is normal according
to [Con99, 2.1.3]. Then, according to [dJ95, 7.4.1], the ring A corresponds to the
analytic functions f ∈ Γ(Xη,OXη ) whose norm is bounded by 1. It then follows
that Xη is connected and normal. Hence according to [Con99, Lemma 2.1.4] Xη is
irreducible . �

Remark 3.2. Vladimir Berkovich has recently proved some cohomological finiteness
results [Ber13, Theorem 3.1.1] which generalize [Con99, Theorem 2.3.1].

Definition 3.3. Let A be a special k◦-algebra, and let X = Spf(A).
(1) Let I ⊂ A be some ideal. We set

V (I) = {x ∈ Xη
∣∣ f(x) = 0 ∀f ∈ I}.

V (I) is a closed analytic set of Xη.
(2) We say that a set Z ⊂ Xη is constructible if it is a finite Boolean combina-

tion of some V (I)’s.

Lemma 3.4. Let A be a special k◦-algebra, let X = Spf(A) and let Z ⊂ Xη be some
constructible subset of Xη. Then Z has finitely many connected components.

Proof. Step 1. By definition, Z is a finite union of sets of the form V (J1) \ V (J2)
where the Ji’s are ideals of A. So we can assume that Z = V (J1) \ V (J2) where J1
and J2 are ideals of A.
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Step 2. Replacing A by A/J1, we can assume that Z = Xη \ V (J) where J is an
ideal of A.

Step 3. Working separately on the irreducible components of Spec(A) we can
assume that A is a domain.

Step 4. We are then reduced to the following situation: A is a special k◦-algebra
which is a domain, and Z = Xη \ V (J) for some ideal J. But in this situation,
it follows from the above mentioned result of B. Conrad that Xη is an irreducible
k-analytic space. So according to [Ber90, Corollary 3.3.20], Z is connected. �

Proof of theorem 1.2

Proof. According to Proposition 2.21, we can find some decomposition

S =

n⋃
i=1

(ϕi)η
(
Dom(Ai) ∩ Zi

)
with ϕi : A → Ai some generalized ring of fractions of A, and the Zi’s are con-
structible sets of (Xi)η where Xi = Spf(Ai). So according to Lemma 2.19 (1),
Dom(Ai) ∩ Zi is a constructible set of (Xi)η. The result then follows from Lemma
3.4, and from the simple fact that the image of a path-connected space by a con-
tinuous map is path-connected. �

References

[Ber90] V.G. Berkovich. Spectral theory and analytic geometry over non-Archimedean fields.
Amer Mathematical Society, 1990.

[Ber93] V.G. Berkovich. Etale cohomology for non-Archimedean analytic spaces. Publications
Mathématiques de l’IHÉS, 78(1):5–161, 1993.

[Ber96a] Vladimir G. Berkovich. Vanishing cycles for formal schemes. II. Invent. Math.,
125(2):367–390, 1996.

[Ber96b] P. Berthelot. Cohomologie rigide et cohomologie rigidea supports propres. Premiere
partie, Prepublication IRMAR, pages 96–03, 1996.

[Ber13] V.G Berkovich. Finiteness theorems for vanishing cycles of formal schemes. 2013. http:
//www.wisdom.weizmann.ac.il/~vova/FormIII_2013.pdf.

[BGR84] S. Bosch, U. Güntzer, and R. Remmert. Non-Archimedean analysis, volume 261 of
Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathe-
matical Sciences]. Springer-Verlag, Berlin, 1984. A systematic approach to rigid analytic
geometry.

[Con99] Brian Conrad. Irreducible components of rigid spaces. Ann. Inst. Fourier (Grenoble),
49(2):473–541, 1999.

[dJ95] A. J. de Jong. Crystalline Dieudonné module theory via formal and rigid geometry. Inst.
Hautes Études Sci. Publ. Math., (82):5–96 (1996), 1995.

[Duc03] A. Ducros. Parties semi-algébriques d’une variété algébrique p-adique. Manuscripta
Math., 111(4):513–528, 2003.

[Duc07] Antoine Ducros. Espaces analytiques p-adiques au sens de Berkovich. Astérisque,
(311):Exp. No. 958, viii, 137–176, 2007. Séminaire Bourbaki. Vol. 2005/2006.

[HL10] E. Hrushovski and F. Loeser. Non-archimedean tame topology and stably dominated
types. ArXiv e-prints, September 2010.

[Lip93] L. Lipshitz. Rigid subanalytic sets. Amer. J. Math., 115(1):77–108, 1993.
[LR00a] Leonard Lipshitz and Zachary Robinson. Model completeness and subanalytic sets.

Astérisque, (264):109–126, 2000.
[LR00b] Leonard Lipshitz and Zachary Robinson. Rings of separated power series. Astérisque,

(264):3–108, 2000.
[Mar00] David Marker. Introduction to model theory. In Model theory, algebra, and geometry,

volume 39 of Math. Sci. Res. Inst. Publ., pages 15–35. Cambridge Univ. Press, Cam-
bridge, 2000.



TAMENESS FOR CONNECTED COMPONENTS 11

[Mar13] Florent Martin. Constructibilité dans les espaces de Berkovich. PhD thesis, Université
Pierre et Marie Curie, 2013.

[Val75] Paolo Valabrega. On the excellent property for power series rings over polynomial rings.
J. Math. Kyoto Univ., 15(2):387–395, 1975.

[Val76] Paolo Valabrega. A few theorems on completion of excellent rings. Nagoya Math. J.,
61:127–133, 1976.

Florent Martin, Laboratoire Paul Painlevé, Université Lille 1, 59655 Villeneuve
d’Ascq, France.

E-mail address: florent.martin@math.univ-lille1.fr


