
ADIC SPACES

FLORENT MARTIN

Contents

1. Affinoid rings and spaces 1
2. (Pre)-Sheaves 3
3. The closed disc and the affine line 5
3.1. The closed disc vs. the affine line 5
3.2. Points of type 1 to 5 6
3.3. Proof of the classification 10
3.4. Local rings 11
3.5. Why not in higher dimensions 12
4. Finite type, proper, étale ... morphisms 13
References 15

1. Affinoid rings and spaces

We fix k a non Archimedean field, that is to say, k is a topological field, whose
topology can be defined by a rank 1 valuation, and R will be a topological ring. In
fact in the context of perfectoid spaces and rigid geometry, the topological ring R
will always be a topological k-algebra, i.e. the topology of R will be compatible with
the topology of k. Actually, most of the time, R will even be a normed k-algebra.
Recall that if R is a topological ring, we say that an ideal I defines the topology of
R, if {In}n∈N is a basis of neighborhood of 0, and in that case R is called an adic
ring.

Definition 1.1 ([Hub93]). Let R be a topological ring.

(1) The ring R is called f-adic if there exists R0 an open subring such that the
topology of R0 is defined by a finitely generated ideal I of R0.

(2) R is called a Tate ring if it is a f-adic ring and if there exists an invertible
element which is topologically nilpotent.

Definition 1.2. A subset M ⊂ R is said to be bounded if for all neighborhood of
0, U , there exists V a neighborhood of 0 such that M.V ⊆ U . An element a ∈ R is
said to be power-bounded if {an

∣∣ n ∈ N} is bounded. We denote by R◦ the set of
power-bounded elements.

Remark 1.3. If R is a normed k-algebra, one checks that a ∈ R is power-bounded
if and only if {‖an‖

∣∣ n ∈ N} is bounded.
1
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Definition 1.4. (1) A valuation on R is a map v : R → Γ0 = Γ ∪ {0} where
Γ is a totally ordered commutative abelian group (noted multiplicatively),
such that

v(ab) = v(a)v(b)

v(a+ b) ≤ max(v(a), v(b))

v(0) = 0 and v(1) = 1.

The order on Γ0 is defined by the order of Γ and the fact that 0 is a minimum
element. Moreover, we set 0 · γ = 0 for all γ ∈ Γ. To simplify notations, we
will often denote valuations by | · |. We will assume most of the time that
the subgroup of Γ generated by v(R) \ {0} is Γ.

(2) A valuation | · | : R→ Γ0 is said to be a continuous valuation if for all γ ∈ Γ,
there exists U a neighborhood of 0 such that |U | ⊆ [0, γ[= {α ∈ Γ0

∣∣ α < γ}.
(3) The subgroup of Γ generated by |R| \ {0} is called the value group of | · |

and is denoted by Γ|·|.
(4) Two valuations v and w on R are called equivalent if there exists an iso-

morphism of totally ordered groups, α : Γv ' Γw such that for all a ∈ R,
w(a) = α(v(a)).

If | · | is a valuation, supp(| · |) = {a ∈ R
∣∣ |a| = 0} is a prime ideal of R and | · |

induces a valuation on the fraction field K = Frac
(
R/supp(| · |)

)
. One can check

that two valuations v and w are equivalent if and only if supp(v) = supp(w) and
the valuation rings they define on K are the same. This is also equivalent to say
that for all a, b ∈ R, v(a) ≤ v(b) if and only if w(a) ≤ w(b).

Definition 1.5. An affinoid ring is given by a pair (R,R+) where R is a f-adic
ring, and R+ ⊆ R◦ is an open and integrally closed subring of R. A morphism f
of affinoid rings between (R,R+) and (S, S+) is a continuous morphism f : R→ S
such that f(R+) ⊆ S+.

In [Hub93] affinoid rings are denoted by (A., A+) and subrings of A. having the
same property as A+ are called rings of integral elements.

Remark 1.6. The definitions of [Hub96] ,[Sch12],[Fon13] might seem different but
actually agree. Indeed let R be a topological k-algebra, the following propositions
are equivalent :

(1) R is f-adic
(2) R is a Tate ring
(3) There exists a subring R0 such that aR0, a ∈ k× forms a basis of open

neighborhoods of 0.
Remark that (3) is the definition of a Tate k-algebra in [Sch12, 2.6]. If R is in fact
a normed k-algebra, R is automatically a Tate k-algebra.

Definition 1.7. Let (R,R+) be an affinoid ring. One defines

X = Spa(R,R+)

:= {continuous valuations | · | : R→ Γ0 such that |R+| ≤ 1}/ '

where ' is the equivalence relation of Definition 1.4 (4). We equip X with the
topology generated by the open subsets {| · | ∈ X

∣∣ |a| ≤ |b| 6= 0} where a, b ∈ R.
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Notation 1. If x ∈ Spa(R,R+), then x is a valuation x : R → Γ0. For f ∈ R, we
will set

|f(x)| := x(f).

Definition 1.8 ([Hoc69]). A topological space X is spectral if X is quasi-compact,
has a basis of topology made by quasi-compact open which is stable under finite
intersection, and such that every irreducible closed subset has a unique generic
point.

In [Hoc69] it is proved that a topological space X is spectral if and only if it is
homeomorphic to Spec(B) for some ring B.

Proposition 1.9. Let (R,R+) be an affinoid ring. Then X := Spa(R,R+) is a
spectral space. Let us define a rational subset of X as

U(
f1, . . . , fn

g
) = {x ∈ X

∣∣ |fi(x)| ≤ |g(x)| 6= 0 i = 1 . . . n}

where the fi’s define an open ideal of R. Then the rational subsets form a basis of
neighborhood of X which is stable under finite intersection.

Spa then defines a functor from the category of affinoid ring to the category of
topological spaces. When R is a Tate ring, R is the only open ideal of R, so in that
case, saying that the fi’s generate an open ideal is equivalent to saying that the
fi’s generate R, and in that case

{x ∈ X
∣∣ |fi(x)| ≤ |g(x)| 6= 0 i = 1 . . . n} = {x ∈ X

∣∣ |fi(x)| ≤ |g(x)| i = 1 . . . n}.

Example 1.10. (1) If A is an affinoid k-algebra (in the sense of rigid geometry
[BGR84]) i.e. a quotient of the Tate algebra k〈T1, . . . , Tn〉, then (A,A◦) is
an affinoid ring1 in the above sense. The following result holds:

Theorem 1.11 ([Hub93, Corollary 4.4]). Let A be an affinoid k-algebra.
Then the topos associated to X =Spa(A,A◦) is equivalent to the topos of
the rigid space Max(A).

(2) If R is a Noetherian ring, I is an ideal of R such that R is complete for the
topology defined by I, then (R,R) is an affinoid ring.

(3) Let R = k〈T 1/p∞〉 and R+ = k◦〈T 1/p∞〉. Then (R,R+) is an affinoid
ring. If x = (xi)i≥1 is a sequence of points of kalg such that xpi+1 = xi for
all i ≥ 1, and x1 ∈ (kalg)◦, then we can define a morphism of k-algebra
x : k〈T 1/p∞〉 → kalg defined by T 1/pn 7→ xn, and

| · |x : k〈T 1/p∞〉 → R+

f 7→ |f(x)|

is a point of Spa(k〈T 1/p∞〉, k◦〈T 1/p∞〉).

2. (Pre)-Sheaves

Let X = Spa(R,R+) and U = U( f1,...,fng ) be a rational subset. We consider B
the integral closure of R+[ f1g , . . . ,

fn
g ] in R[ f1g , . . . ,

fn
g ]. Then, (R[ f1g , . . . ,

fn
g ], B) is

1One must check that A◦ is integrally closed in A.
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an affinoid ring. We then take its completion (R〈 f1g , . . . ,
fn
g 〉, B̂).2 By functoriality,

one can define a morphism

ψ : Spa(R〈f1
g
, . . . ,

fn
g
〉, B̂)→ Spa(R,R+)

It fulfills the following universal property: for all complete affinoid ring (S, S+) and
ϕ : (R,R+) → (S, S+) a morphism of affinoid ring such that Im (Spa(ϕ)) ⊆ U
where Spa(ϕ) : Spa(S, S+) → Spa(R,R+), then ϕ factorizes uniquely through
(R〈 f1g , . . . ,

fn
g 〉, B̂).

From this it follows that R〈 f1g , . . . ,
fn
g 〉 and B̂ depend only on U . We then set

OX(U) = R〈 f1g , . . . ,
fn
g 〉 and O

+
X(U) = B̂. In this way, one checks that OX and

O+
X are presheaves on the rational subsets of X. Now, if W ⊂ X is an open subset,

we set
OX(W ) = lim←−

U⊆W
OX(U)

where the limit is taken over the rational subsets U ⊆W , and likewise

O+
X(W ) = lim←−

U⊆W
O+
X(U).

Remark that OX and O+
X are presheaves of complete topological rings. One checks

that for all x ∈ X, and x ∈ U a rational subset, x : R → Γ can be extended to
x : OX(U) → Γ. So x can be extended to OX,x. It follows that OX,x is a local
ring with maximal ideal Mx = {f ∈ OX,x

∣∣ |f(x)| = 0}. We set k(x) = OX,x/Mx.
So k(x) is naturally equipped with a valuation: f → |f(x)| and we set k+(x) its
valuation ring. For an open subset U :

O+
X(U) = {f ∈ OX(U)

∣∣ |f(x)| ≤ 1 ∀x ∈ U}.

In general, OX is not a sheaf. The previous remark however shows that if it was a
sheaf, then O+

X would also be a sheaf. However

Definition 2.1. A topological ring is strongly Noetherian if for all n ∈ N, R〈T1, . . . , Tn〉
is Noetherian 3.

Theorem 2.2 ([Hub94, Theorem 2.2]). Let R be strongly Noetherian, and let X :=
Spa(R,R+). Then OX is a sheaf.

One then defines (V ) as the category of locally ringed spaces (X,OX), such that
the sheaf OX is a sheaf of topological rings, and such that for all x ∈ X, there is
given an equivalence class of valuation vx of the stalk OX,x. The morphisms in (V )
must be compatible with all these data.

Definition 2.3. Let (R,R+) be an affinoid ring and X = Spa(R,R+). If OX is a
sheaf, we’ll say it is an affinoid adic space (seen as an object of (V )). An adic space
is an object of (V ) which is locally an affinoid adic space.

Adic spaces fulfill most of the expected properties, such as

2One has to convince himself that the completion of arbitrary topological rings exists, and that
the completion (R̂, R̂+) of an affinoid ring (R,R+) is still an affinoid ring.

3I do not know an example of a Banach Noetherian ring R which is not strongly Noetherian,
but I guess some people do.
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Proposition 2.4. If X and Spa(R,R+)are adic spaces, then

Hom
adic spaces

(X,Spa(R,R+)) ' Hom
affinoid rings

(
(R̂, R+), (OX(X),O+

X(X))
)
.

Theorem 2.5. There is a functor

rk : {rigid spaces over k} → {adic spaces over Spa(k, k◦)}

obtained by gluing the functor Max(A) 7→Spa(A,A◦). It is fully faithful and induces
an equivalence of category :

{rigid spaces over k quasi-separated} ' {quasi-separated adic spaces locally of finite type over Spa(k, k◦)}

where finite type will be defined in the next section.

3. The closed disc and the affine line

We want to explain the classification of points in the affine line, when k is
algebraically closed, the so called points of type 1,2,3,4 and 5. So we will assume
that k = kalg. Sometimes we will write kalg to really emphasize on it.

3.1. The closed disc vs. the affine line. We set B = Spa
(
k〈T 〉, k◦〈T 〉

)
and call

it the closed unit disc. More generally, for r ∈ |k∗|, let Br = Spa
(
k〈r−1T 〉, k◦〈r−1T 〉

)
.

When r ≤ r′, Br is an rational subset of Br′ , so we can glue the Br’s to form Aad
k ,

which is the union of the Br’s.

Lemma 3.1. B is in natural bijection with the set of valuations v : k[T ]→ Γ0 such
that v(T ) ≤ 1 and such that the convex subgroup generated by v(k∗) is Γ itself.

Proof. One can restrict a continuous valuation v : k〈T 〉 → Γ0 to k[T ]. Let us prove
that this restriction v : k[T ] → Γ0 satisfies the condition that that the convex
subgroup generated by v(k∗) is Γ itself. Let γ ∈ Γ and let us prove that γ is in
the convex subgroup generated by v(k∗). Considering γ−1 if necessary, we can
assume that γ ≤ 1. So by the continuity assumption on v ∈ B, there exists an open
neighborhood U of 0 ∈ k〈T 〉 such that v(U) ⊂ [0, γ[. So in particular, there exists
λ ∈ k∗ such that v(λ) ≤ γ. This implies that γ ≤ v(λ−1).

Injectivity. Let v, v′ ∈ B and let us assume that their restriction to k[T ] coincide.
Then v and v′ coincide on k[T ]. This follows for instance from Weierstrass Prepara-
tion Theorem: if f ∈ k〈T 〉, then f has a factorization f = P.u where P ∈ k[T ] and
u ∈ 1 + k◦◦〈T 〉. Sometimes u is called a multiplicative unit because u is invertible
and u, u−1 ∈ k◦〈T 〉. In particular v(u) ≤ 1 and v(u−1) ≤ 1, so v(u) = 1. Hence v
and v′ are determined by their restriction to k[T ].

Surjectivity. Let v : k[T ]→ Γ0 be a valuation such that v(T ) ≤ 1 and the convex
subgroup generated by v(k∗) is Γ. Let f ∈ k〈T 〉, and let fn be a sequence of k[T ]
which converges to f . Then either v(fn) tends to 0 in Γ0, either it is stationary.
This relies on the fact that if λn → 0 in k, then v(λn) → 0 in Γ0 (see Remark 3.2
(2) for a counter example in general). In any case v(fn) has a limit, it does not
depend on the choice of the sequence fn, and we set v(f) := limn v(fn). One checks
that this defines a valuation ṽ on k〈T 〉. Let us prove that it ṽ is continuous. Let
γ ∈ Γ and let us prove that ṽ−1([0, γ[) is a neighborhood of 0. Since the convex
subgroup generated by v(k∗) is Γ, there exists some λ ∈ k∗ such that v(λ) ≤ γ.
Then v(λk◦〈T 〉) ⊂ [0, γ[ and λk◦〈T 〉) is a neighborhood of 0. �
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Remark 3.2. (1) The use of Weierstrass Preparation is not optimal. In par-
ticular, this could generalize to (Ank )ad. Let us mention that according to
[Hub93, Proposition 3.9], there is a homeomorphism Spa(k〈T 〉, k◦〈T 〉) '
Spa(k[T ], k◦[T ]).

(2) Let us consider the ordered group R∗+ × εZ, with ε < r for any r ∈ R+.
Then the sequence 1

n does not tend to 0 in Γ. We can define a valuation,
v : P =

∑
aiT

i ∈ k[T ] 7→ max |ai|T i. This max is uniquely attained for
the smallest index i such that ai 6= 0. Then v is a valuation, which satisfies
v(T ) ≤ 1, nut v is not continuous.

One last comment : let k → K be some extension of valued fields, and let
us denote by | · |K : K → Γ0 the norm on K. Let us assume that the convex
subgroup generated by |k∗|K is Γ. Any x ∈ K induces a point of A1,ad

k defined
by P ∈ k[T ] 7→ |P (x)|K . And any point of A1,ad

k arises in this way. The above
construction induces a continuous map K → A1,ad

k . This map is never injective,
except when K ⊂ kp−∞ , the perfect closure of k. It might be surjective but K has
to be big. In particular, when K = k̂alg it is not surjective. And it it never bijective.
Let us finally remark that the existence of non rigid points is very specific to the
non-Archimedean situation. If k is any non-Archimedean field, one can extend,
and in many ways, the norm of k to k(T ). This is not the case in the Archimedean
setting : one can not extend the Archimedean norm | · |∞ of C to C(T ) because
according to Gelfand-Mazur Theorem, the only C-Banach field is C.

3.2. Points of type 1 to 5. We assume that k = kalg. We want to describe 5

families of points which appear in A1,ad
k . In the next subsection, we will show that

these are the only ones.

3.2.1. Type 1. They correspond to maximal ideals of k[T ], and are in canonical
bijection with the orbits of kalg under the action of Gal(ksep/k) according to the
Nullstellensatz. If x ∈ kalg, the associated valuation is simply given by P ∈ k[T ] 7→
|P (x)| ∈ R+.

3.2.2. Type 2 and 3. We start with the main example, the so called Gauss point
that we will denote by η.

η : k[T ] → R+∑
i aiT

i 7→ maxi |ai|

Fact. η defines indeed a valuation.

Proof. The only thing to check is that for P =
∑
aiT

i and Q =
∑
biT

i, if
PQ =

∑
ciT

i then max(|ai|).max(|bi|) = max(|ci|). Up to a normalization of the
coefficients, we can assume that max(|ai|) = max(|bi|) = 1, which is equivalent to
require that P,Q ∈ k◦[T ] and that their reduction in k̃[T ] is nonzero. But then PQ
is also in K◦[T ] and its reduction is also nonzero, so η(PQ) = 1. �

Remind that the norm on k extends uniquely to kalg.

Fact. For P ∈ k[T ], η(P ) = max
z∈(kalg)◦

|P (z)|.
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Proof. Up to a normalization, we can still assume that η(P ) = 1, i.e. that P ∈ k◦[T ]

and that its reduction P̃ [T ] is nonzero. Then for z ∈ (kalg)◦, |P (z)| ≤ 1. Finally, let
us pick some λ̃ ∈ k̃ such that P̃ (λ) 6= 0, and and some λ ∈ (kalg)◦ whose reduction
is λ̃. Since P̃ (λ) 6= 0, it follows that |P (λ)| = 1. �

Now, let us consider r ∈ R∗+, and define

ηr : k[T ] → R+∑
i aiT

i 7→ maxi |ai|ri

This generalizes the above construction because η = η1. For c ∈ kalg let us set
B(c, r) := {z ∈ kalg

∣∣ |z − c| ≤ r} the closed ball in kalg of center c and radius r.

Fact. For r ∈ R∗+, ηr defines a valuation. For P ∈ k[T ], ηr(P ) = supz∈B(0,r) |P (z)|.

Proof. If r ∈
√
|k∗| the above proof works, and we can write max instead of sup. In

general, to show that ηr is a valuation, let P =
∑
aiT

i, Q =
∑
biT

i ∈ k[T ] and let
PQ =

∑
ciT

i. Then the ultrametric property shows that ηr(PQ) ≤ ηr(P )ηr(Q).
On the other hand, an easy calculation shows that if i (resp. j) is the smallest index
such that |airi| = ηr(P ) (resp. |bjrj | = ηr(Q)) then |ci+j |ri+j = |ai|ri|bj |rj which
proves that ηr(PQ) ≥ ηr(P )ηr(Q), so ηr is a valuation. To prove the characteriza-
tion of ηr in terms of sup, one can remark that if P ∈ k[T ] then s ∈ R∗+ 7→ ηs(P )

is continuous, thus lim
s→r, s<r

ηs(P ) = ηr(P ). If r /∈
√
|k| then

B(0, r) = ∪s<rB(0, s) =
⋃

s∈
√
|k×|, s<r

B(0, s).

Beware that if r ∈
√
|k×|, then ∪s<rB(0, s) ( B(0, r). Finally

ηr(P ) = lim
s∈
√
|k×|

s<r

ηs(P ) = lim
s∈
√
|k×|

s<r

sup
z∈B(0,s)

|P (z)| = sup
z∈B(0,r)

|P (z)|.

�

More generally, if c ∈ k, r ∈ R∗+, we set

ηc,r : k[T ] → R+∑
i ai(T − c)i 7→ maxi |ai|ri

Hence ηc,r is obtained from ηr by a change of variables: ηc,r
(
P (T )

)
= ηr

(
P (T +c)

)
.

It then follows from the above facts that

Fact. ηc,r defines a valuation. For P ∈ k[T ], ηc,r(P ) = supz∈B(c,r) |P (z)|. For two
choices (c, r), (c′, r′) then ηc,r = ηc′,r′ if and only if B(c, r) = B(c′r′) which is also
equivalent to say that r = r′ and |c− c′| ≤ r.

If r ∈
√
|k×|, ηr,c is called a type 2 point. If r /∈

√
|k×|, ηr,c is called a type 3

point.
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3.2.3. Type 4. A non-Archimedean extension k → K is said to be an immediate
extension if the associated extensions of residue fields k̃ → K̃ and value group
|k∗| → |K∗| are trivial. If x ∈ K \ k we will denote by vx : P ∈ k[T ] 7→ |P (x)|K the
associated point of A1,ad

k and will say it is a type 4 point. For instance, ̂C((t))alg →
C((tQ)) is an immediate extension. One can attach a type 4 point to the element∑

n∈N∗
t

(
−1
n

)
∈ C((tQ)) \ ̂C((t))alg.

If x ∈ K \ k as above, let us consider B the set of closed ball in K with center
in k which contain x. That is to say we consider balls B = {z ∈ K

∣∣ |z − c| ≤ r}
such that c ∈ k, r ∈ R∗+ and x ∈ B. Then B is a totally ordered set for inclusion
because two balls of B with the same radius r have a common point (namely x),
so are equal. It follows that B = {Bi}i∈I where I is an interval of R∗+ of the form
. . . ,+∞[. It easy to see that I must be of the form ]a,+∞[ for some 0 < a. If a
was 0, by completeness of k we would conclude that x ∈ k. And the interval must
be open around a: indeed let us assume that I = [a,+∞[, and let c ∈ k such that
|x − c| ≤ a. Then, a must be equal to |x − c|, otherwise b := |x − c| < a and we
should have b ∈ I. So, since a = |x − c|, up to a rescalling, we can assume that
a = 1. Then since |x− c| ≤ 1, since k̃ = K̃ we can even find some d ∈ k such that
|x− d| < 1 which is a contradiction.

3.2.4. Type 5. Points of type 1 to 4 are rank 1 valuations. This means that their
value group Γ is a totally ordered abelian group of rank 1. The rank d of a totally
ordered abelian group Γ is the smallest integer d such that Γ can be embedded as a
totally ordered subgroup of (R,+, <)d equipped with the lexicographic order. This
is equivalent to say that there is no sequence G0 ( G1 ( G2 . . . ( Gd+1 of convex
subgroup of Γ.

The easy thing with rank 1 valuations, is that one does not have to define in
advance the value group Γ. We were starting with some norms | · | : k → Γ0 ⊂ R+,
and we have extended the valuation staying in R+. Let us give a complicated reason
for this: if Γ

ϕ−→ (R,+) and Γ
ψ−→ ∆ are injections of totally ordered abelian groups,

and if Γ 6= {0} and ∆ has rank 1, then there is a unique morphism of totally ordered
abelian groups ι : ∆→ R making the following diagram commute

Γ
ϕ //

ψ

��

R

∆

ι

??

To define a rank 2 valuation, we first have to define a value group Γ of rank 2.
Let us give a naive description of this Γ. It will contain R∗+. It will also contain
some element γ ∈ Γ \ R∗+ which is smaller than 1 but infinitesimally closed to 1.
One might think of γ as some 1−. More precisely, γ < 1, and x < γ for every
element x ∈]0, 1[⊂ R. A general element of Γ will then be of the form xγn with
x ∈ R∗+ and n ∈ Z. The order is defined in the following way:

xγn ≤ 1⇔


x < 1

or
x = 1 and n ≥ 0
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Beware that although γ < 1, the following inequality holds

0, 999999 < γ100000 < 1.

This has to be compared (after taking logarithm) with the fact that in calculus, if
ε is a negative infinitesimal element, then

−0, 000001 < 100000ε < 0.

For a more precise definition, we can define Γ as the product R∗+ × Z with the
lexicographic order, that is to say

(x, n) ≤ (1, 0)⇔


x < 1

or
x = 1 and n ≤ 0

With the above description, γ corresponds to (1,−1) ∈ R∗+ × Z.
Now, we are ready to give the archetypal type 5 point. We will denote it by η−

but this notation is not standard.

η− : k[T ] → Γ0∑
n anT

n 7→ max |an|γn

Why is this a valuation? Let P =
∑
aiT

i, Q =
∑
i biT

i, PQ =
∑
ciT

i and let us
give two reasons why η−(PQ) = η−(P )η−(Q). First, up to normalization, we can
assume that P,Q ∈ k◦[T ] with nonzero reductions.

First reason. Let i (resp. j) be the first index such that |ai| = 1 (resp. |bj | = 1).
It then follows from a simple calculation (which already appeared above) that the
first index l for which |cl| = 1 is l = i+ j. In other words, η−(P ) = γi, η−(Q) = γj

and η−(PQ) = γi+j = η−(P )η−(Q).
Second reason. If R ∈ k◦[T ] with nonzero reduction, then η−(R) = γordT (P̃ ).

where ordT is the T -adic valuation on k̃[T ]. �
More generally, for c ∈ k and r ∈ R∗+, we set

ηc,r− : k[T ] → Γ0∑
n an(T − c)n 7→ max |an|rnγn

Fact. If r /∈ |k∗| the valuation ηc,r− is equivalent to the type 3 point ηc,r.

Proof. Let P ∈ k[T ], λ ∈ R∗+ and n ∈ Z. We claim that

(1) ηc,r−(P ) = λγn if and only if ηc,r(P ) = λ.

⇒ follows from the definition. To prove ⇐, one remarks that |a|rnγn = |b|rmγm if
and only if |a| = |b| and m = n.

This implies that if P,Q ∈ k[T ], ηc,r(P ) < ηc,r(Q) if and only if ηc,r−(P ) <
ηc,r−(Q). �

If r ∈
√
|k×|, ηc,r− defines a new valuation. It corresponds to the open ball of

radius r centered in c . More precisely, if c, c′ ∈ k and r, r′ ∈ R∗+, ηc,r− = ηc′,r−
if and only if B◦(c, r) = B◦(c′, r′). This is also equivalent to say that r = r′ and
|c− c′| < r.

With one ultimate effort, we can define some more points. The valuation ηc,r−
happen to be a valuation on k(T ). The change of variables T 7→ 1

T should send the
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point ηc,r− to some new point. Let us define

ηc,r+ : k[T ] → Γ0∑
n an(T − c)n 7→ max |an|rnγ−n

Beware that γ−1 should be thought as 1+. This defines a new valuation of A1,ad
k .

And ηc,r+ = ηc′,r′+ if and only if B(c, r) = B(c′r′).

Fact. Let ϕ : P1,ad
k → P1,ad

k be the automorphism induced by the automorphism of
k(T ) sending T to 1

T .
(1) ϕ(η0,1−) = ηc,1+ .
(2) If |c| = 1, ϕ(ηc,1−) = ηc−1,1−

More generally
(1) If |c| < r, ϕ(ηc,r−) = ηd,(r−1)+ for any d ∈ k such that |d| = r−1.
(2) If |c| = r, ϕ(ηc,r−) = ηc−1,(r−1)+

This is coherent with the fact that if |c| = 1, then B◦(c, 1)−1 = B◦(c−1, 1).

Remark 3.3. The point η0,1+ is a continuous valuation of k〈T 〉 but doesn’t satisfy
η0,1+(k◦〈T 〉) ≤ 1. If one sets C := {

∑
n anT

n
∣∣ |a0| ≤ 1 and |ai| < 1, i > 0} ⊂ k〈T 〉,

then (k〈T 〉, C) is an affinoid ring, and Spa(k〈T 〉, C) = B ∪ {η0,1+}.

Remark 3.4. For all c′ such that |c′ − c| ≤ r, ηc′,r− ∈ {ηc,r}, and ηc,r+ ∈ {ηc,r}
and this describes all the points of {ηc,r}. More precisely, inside A1,ad

k , {ηc,r} is
isomorphic to P1

k̃
. Beware that inside B, {η0,1} is isomorphic to A1

k̃
.

3.3. Proof of the classification.

Proposition 3.5. When k = kalg, A1,ad
k consists precisely of the points of type 1

to 5.

Proof. Let v : k[T ]→ Γ be some valuation of A1,ad
k .

Case 0. Let us assume that supp(v) 6= {0}. This must be some nonzero prime
ideal of k[T ], hence of the form (T − c) for some c ∈ k. So v must factorize as
v : k[T ]→ k → Γ0 and thus must be a type 1 point.

So we can assume that supp(v) 6= {0}, hence we can assume that v actually
comes from a valuation v : k(T )→ Γ0 extending the norm of k. So we just have to
understand the possible ways to extend4 a valuation to k(T ).

Case 1. Let us assume that Γ = |k∗| and k̃(T ) = k̃. This means v is a type 4
point.

Case 2. Let us assume that Γ = |k∗| and k̃ ( k̃(T ). Then there must be some

a ∈ k and b ∈ k∗ such that v(T−ab ) = 1 and (̃T−ab ) /∈ k̃, hence is a transcendental
element. Up to a change of variables, we can assume that v(T ) = 1 and T̃ is tran-
scendental. Let us consider some P =

∑
i aiT

i ∈ k◦[T ]\k◦◦[T ]. Then v(P ) ≤ 1 and
the reduction of P in k̃(T ) is

∑
ãiT̃

i which is nonzero because T̃ is transcendental
and one of the ãi’s is nonzero by assumption. So v(P ) = η(P ). Hence v is a type
2 point.

4 Let us mention that any good reference about valuation theory, for instance the section
[Bou98, VI Chapter 10] entitled Prolongements d’une valuation à une extension transcendante
contains the tedious case disjunction which follows.
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Case 3. Let us assume that |k∗| ( Γ. So there exists c ∈ k such that ξ :=
v(T − c) /∈ |k∗|. A calculation already made before implies that

(2) v(
∑

ai(T − c)i) = max
i
|ai|ξi.

Moreover, this maximum is attained on one single index i.
Case 3.1. Let us assume that Γ is of rank one. Then there exists a (unique)

embedding Γ ⊂ R∗+ which preserves our initial embedding |k| ⊂ R∗+. So we can
assume that Γ ⊂ R∗+ and ξ ∈ R∗+ \ |k∗|. Then v = ηc,ξ.

Case 3.2. Let us assume that Γ is not of rank one. According to the formula
(2), one sees that Γ ' |k∗|ξZ. Remind that the only condition we put on v to be in
A1,ad
k is that the convex subgroup generated by |k∗| must be Γ itself, in other words

that there are no elements in Γ which are infinitesimally bigger than |k∗|. The only
possibility is that Γ should be an ordered subgroup of |k∗| × Z ⊂ R∗+ × Z with
the lexicographic order, or in other words that Γ should be an ordered subgroup of
R∗+γZ, the value group we have considered to define type 5 points. So ξ should be
sent to some rγn with r ∈ R∗+ and n ∈ Z.

Claim. r ∈ |k∗|.

If not, r ∈ R∗+ \ |k∗|. We subclaim that for a ∈ k∗ and n ∈ Z

|a|ξn < 1⇔ |a|rnγn < 1⇔ |a|rn < 1.

Only the last equivalence has to be proved. ⇐ is true because γ is infinitesimally
closed to 1. For ⇒, if |a|rnγn < 1, it follows that |a|rn ≤ 1, because γ is still
infinitesimally closed to 1. But if |a|rn = 1 then necessarily |a| = 1 and n = 0
because we have assumed that r ∈ R∗+ \ |k∗|. But this would contradict the fact
that |a|rnγn < 1. This proves the subclaim. This subclaim would imply that
v ' ηc,r which would be a contradiction.

So, r ∈ |k∗|, and up to a change of variables, we can assume that v(T ) = γ±1,
i.e. that v is of type 5.

This ends the proof since there are no more cases. �

3.4. Local rings. Let us describe the local rings in A1,ad
k .

Type 1. The local ring of the origin is

OA1,ad
k ,0 = lim−→

r>0

k〈r−1T 〉.

Type 2. It is enough to consider η, the other local rings being isomorphic to
it. A basis of neighborhood of η is given by the affinoid domains defined by the
inequalities

{|T − ai| = 1, i = 1 . . . n}
where a1, . . . , an ∈ k◦. In fact only the residue classes ãi matter. So

OA1,ad
k ,η = lim−→

n∈N
ã1,...,ãn∈k̃

O({|T − ai| = 1, i = 1 . . . n}).

These affinoid rings have very natural descriptions in terms of Laurent series (see
for instance [FvdP04, 2.2.6]):

O({|T −ai| = 1, i = 1 . . . n}) ' {
∑
ν∈Zn

aν(T −a1)ν1 · · · (T −an)νn
∣∣ |aν | |ν|→+∞−−−−−→ 0}.
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Type 3. Let r ∈ R∗+ \ |k∗|. A basis of neighborhood of ηr is given by the affinoid
domains {s1 ≤ |T | ≤ s2} where si ∈ |k∗| and s1 < r < s2. So

OA1,ad
k ,ηr

= lim−→
s1,s2∈|k∗|
s1<r<s2

O({s1 < |T | < s2}).

Type 4. If x ∈ A1,ad
k corresponds to a decreasing sequence of balls {Bi} with

empty intersection, then
OA1,ad

k ,x = lim−→
i

O(Bi).

Type 5. A basis of neighborhood of η0,1− is given by the affinoid domains {s ≤
|T |, |T − ai| = 1, i = 1 . . . n} where |ai| = 1 and s < 1. Hence

OA1,ad
k ,η0,1−

= lim−→
n∈N, s<1

ã1,...,ãn∈k̃∗

O({s ≤ |T |, |T − ai| = 1, i = 1 . . . n}).

Let us remark that

OA1,ad
k ,η0,1+

= lim−→
n∈N, s>1

ã1,...,ãn∈k̃∗

O({s ≥ |T |, |T − ai| = 1, i = 1 . . . n}).

There is a natural inclusion OA1,ad
k ,η0,1−

↪→ OA1,ad
k ,η0,1

. One last remark: except for
type 1 points, these local rings are fields.

3.5. Why not in higher dimensions. According to the above classification, up
to isomorphism, there are few type of points in A1,ad

k . We have shown that if x, x′
are points of the same type, the type being 1, 2 or 5, there exists an automorphism ϕ

of P1,ad
k such that ϕ(x) = x′. Two type 3 points ηc,r, ηc′,r′ have the same completed

residue field if and only if r
r′ ∈ ‖k

∗| or rr′ ∈ |k∗|.
A general comment: to any point x in(Ank )ad, one can associate three invariants

to k(x), namely.

a = tr.deg.(k̃(x)/k)

b = dimQ(Q⊗Z (|k(x)∗|/|k∗|)
c = rank(|k(x)∗|)− rank(|k∗|)

These invariants satisfy the following relations: b ≤ c and a + b ≤ n. In the case
of the line each type of points corresponds to one of the five possibilities for these
a, b, c.

In higher dimension, we can of course find some familiar points. For instance, if
we define Γ as an ordered group, containing R+∗, and adding some generic elements
γ, γ′ such that rγnγ′m < 1 if and only if r < 1 or (r = 1 and n > 1) or (r = 1,
n = 1, and m > 0). Then

∑
ai,jT

iU j 7→ max |ai,j |γiγ′j ∈ Γ defines a new points.
But even for A2,ad

k more complicated phenomena appear. Let us list some of them.

(1) The residual extension k̃(x)/k̃ might not be purely transcendental and func-
tions fields of higher genus over k̃ appear.

(2) We might take Γ ⊂ R∗+ × γZ+
√
2Z with γ some kind of 1− and define a

valuation
∑
ai,jT

iU j 7→ max |ai,j |γiγ′
√
2j ∈ Γ.
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4. Finite type, proper, étale ... morphisms

For simplicity we assume that R is a Tate ring.

Definition 4.1. A morphism f : (R,R+) → (S, S+) between affinoid rings is a
quotient map if f is surjective continuous and open, and S+ is the integral closure
of f(R+) in S.
If (R,R+) is an affinoid ring with R Tate, we set

(R,R+)〈T1 . . . Tn〉 = (R〈T1 . . . Tn〉, R+〈T1 . . . Tn〉)

which is an affinoid ring5.

Definition 4.2. A morphism of affinoid rings (R,R+)→ (S, S+) is of topologically
finite type if it factorizes as (R,R+) → (R,R+)〈T1 . . . Tn〉

π−→ (S, S+) where π is a
quotient map.

Definition 4.3. Let f : X → Y be a morphism of adic spaces. It is
(1) locally of weakly finite type if for all x ∈ X there exists U, V , open affinoid

subspaces of X,Y , such that x ∈ U , f(U) ⊆ V and such that the morphism
of f-adic ring OY (V )→ OX(U) is of topologically finite type.

(2) locally of finite type if for all x ∈ X there exists U, V , open affinoid sub-
spaces of X,Y , such that x ∈ U and f(U) ⊆ V and such that the affinoid
ring morphism (OY (V ),O+

Y (V )) → (OX(U),O+
X(U)) is of topologically fi-

nite type.
(3) f is of finite type if it is quasi-compact and locally of finite type.

Proposition 4.4. If f : X → Z and g : Y → Z are morphisms of adic spaces with
f locally of finite type, one can define the fiber product of f and g.

Definition 4.5. If f : X → Y is a morphism of adic spaces locally of finite type 6,
then

(1) f is separated if ∆(X) is closed in X ×Y X where ∆ is the diagonal mor-
phism.

(2) f is universally closed if it is locally of weakly finite type, and for all adic
morphism 7 Y ′ → Y , X ×Y Y ′ → Y ′ is closed.

(3) f is proper if it is of finite type, separated and universally closed.

In [Hub96, 1.3] a kind of valuative criterion for properness is proved.
B =Spa(k〈T 〉, k◦〈T 〉) is not proper, however, if C = {

∑
n anT

n
∣∣ |a0| ≤ 1 and |ai| <

1, i > 0}, then Spa(k〈T 〉, C) is proper.
This notion of properness is related to the notion of properness of rigid k-spaces,
see [Hub96, Rem 1.3.19].

Definition 4.6.
(1) A morphism f : (R,R+) → (S, S+) of affinoid rings is finite if it is of

topologically finite type, R → S is finite, and S+ is the integral closure of
f(R+).

5One has to check that R+〈T1 . . . Tn〉 is integrally closed in R〈T1 . . . Tn〉.
6Huber needs only f to be locally of +weakly finite type which is more general than locally of

finite type.
7see p.46 of [Hub96] for the definition of an adic morphism
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(2) A morphism of adic spaces f : X → Y is finite if for all y ∈ Y , there
exists an affinoid neighborhood U such that f−1(U) = V is affinoid and
(OY (V ),O+

Y (V ))→ (OX(U),O+
X(U)) is finite.

(3) f is locally quasi-finite if ∀y ∈ Y , f−1(y) is discrete.
(4) f is quasi-finite if f is quasi-compact and locally quasi-finite.

Definition 4.7. If (R,R+) is an affinoid ring, and I an ideal of R, we denote by
(R,R+)/I the affinoid ring (R/I, (R+/(I ∩ R+))c) where (R+/(I ∩ R+))c is the
integral closure of R+/(I ∩R+) in R/I.8

Definition 4.8.

(1) A morphism f : X → Y which is locally of finite type is called unramified
(resp. smooth, resp. étale) if for all affinoid ring (R,R+), and all ideal I of
R such that I2 = {0}, and g : Spa(R,R+)→ Y , HomY (Spa(R,R+), X)→
HomY (Spa((R,R+)/I), X) is injective (resp. surjective, resp. bijective).

(2) A morphism f : X → Y is said to be unramified (resp. smooth, resp.
étale) at x ∈ X if there exist U, V open subsets of X,Y such that x ∈ U
and f(U) ⊆ V and f|U : U → V is unramified (resp. smooth, resp. étale).

One can define sheaf of differentials ΩX|Y (which is an OX -module), when f :
X → Y is locally of finite type, such that

Proposition 4.9.

(1) f is unramified if and only if ΩX|Y = 0.
(2) If f is smooth, ΩX|Y is a locally free OX-module.
(3) If (R,R+) is an affinoid ring with R Tate, Y = Spa(R,R+), then f : X →

Y is smooth if and only if for all x ∈ X there exists a commutative diagram

U
g //

f

��

Spa((R,R+)〈T1, . . . , Tn〉)

huu
Spa(R,R+)

where U is an open neighborhood of x, h is the natural morphism and g is
étale.

Proposition 4.10. Let f : X → Y = Spa(R,R+) be a morphism of affinoid adic
spaces, with R Tate. The following are equivalent:

(1) f is étale.
(2) There exists n ∈ N, f1 . . . fn ∈ R〈T1 . . . Tn〉 such that if I is the ideal

(f1, . . . , fn) then det( ∂fi∂Tj
)1≤i,j≤n is invertible in R〈T1 . . . Tn〉/I, and X is

Y -isomorphic to Spa((R,R+)〈T1 . . . Tn〉/I).
(3) There exists n ∈ N, f1 . . . fn ∈ R[T1 . . . Tn] such that if I is the ideal

(f1, . . . , fn) then det( ∂fi∂Tj
)1≤i,j≤n is invertible in R〈T1 . . . Tn〉/I, and X is

Y -isomorphic to Spa((R,R+)〈T1 . . . Tn〉/I).

8that we equip with the quotient topology.
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