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Préliminaires

0.1 Valuation ring

Dé�nition 0.1 cf [8, p.71] An integer ring R is a valuation ring if, noting K for its �eld of
fraction, @x P K , x P R or x�1 P R.
cf aussi [1, p122]

Proposition 0.1 If R is a valuation ring, R is a local ring. The ideals of R are totally ordered by
inclusion.

D : R is local i� the non-invertible elements are stable by addition. If x and y are not invertible,
if x or y is 0, then OK, otherwise, xy say is in R.Then x� y � y� y xy � yp1� x

y q, and since y isn't
invertible, x� y neither.
Let I and J be two ideals of R. Suppose I � J and J � I . let then i P IzJ and j P JzI. By
symetry, suppose that i

j P R. Then i � j ij P J , which is absurd. �
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Actually, this also proves that R is a local ring : de�ne m as the union of all the proper ideals of
R. It is a proper ideal beceause they are totally orderd by inclusion, and maximal.

Proposition 0.2 Let K be a �eld, v : K Ñ Γ0 such that
vpxq � 0iffx � 0
vpxyq � vpxqvpyq.
Then v is a valuation i� @x such that vpxq ¤ 1 , vp1� xq ¤ 1.

D : ñ vp1� xq ¤ maxpvp1q, vpxqq � 1.
ô : let x and y P K not zero (otherwise it is easy). Suppose vpxq ¥ vpyq. Hence vp yx q ¤ 1. Then
vpx� yq � vpxqvp1� y

x q ¤ vpxq. �

Dé�nition 0.2 A valuation on A is v : AÑ Γ0 such that vpabq � vpaqvpbq and
1. [2, VI, �3] or [8, p. 75] , vpx � yq ¥ minpvpxq, vpyqq and the law on Γ0 is that 0 is 8 , i.e.

greatest element (we should note in fact Γ8
2. [5] vpx� yq ¤ maxpvpxq, vpyqq, and 0 is the lowest element.

Putting w :� 1
v , i.e. wpaq � vpaq�1 if vpaq � 0 , and wpaq � 0 if vpaq � 0 (in fact 0 Ø8) , gives

a bijection between valuation of hte types (i) and (ii). We will always take de�nition (ii).

0.2 product of valuation

If vi : AÑ Gammai0 are two valuations (i � 1, 2), then
v : AÑ Γ1 � Γ20 (with the lexicographic order) is not a valuation in general. Indeed if one can �nd
a and b such that v1paq   v1pbq and v2pbq   v2paq , then we would have vpa� bq � pv1pbq, v2paqq ¡
maxpvpaq, vpbqq � vpbq � pv1pbq, v2pbqq.
Exemples :
* A � Z , v2the2�adic valuation, and v3 the 3-adic one, then vp2�3q � p0, 0q, vp2q � p�1, 0q, vp3q �
p0,�1q.

*A � ktT u. v1 � ηBp0,1q and v2 � ηBp0, 1p .

Then vpT 2 � pq � p1, 1
p q , vpT 2q � p1, 1

p2 q , vppq � p 1
p ,

1
p q.

0.3 Completion of a topological ring

Let A be a topological ring. A sequence in A is said to be a Cauchy sequence if for every
0-neighborhood V there exists N such that n,m ¥ N implies xn � xm P V .
If xn Ñ l , then xn is Cauchy. Indeed let V be the 0 neigborhood, then there exists a 0-neigborhood
W such that W �W � V . Then for n big enough xn P l �W , and xn � xm PW �W � V .

Acauchy is a group for �. If xn and yn are Cauchy, let V be a 0-neigborhood. LetW be another
one such that W �W � V . Then for n big enough, xn � xm P W and the same thing for y,
so that px� yqn � px� yqm PW �W � V .

xn Cauchy ñ xn bounded. Let V be a 0-neighborhood, and W st W �W � V (in particular
W � V ). Let X1, X2 two neigborhoods s t X1.X2 �W . DN s t n ¥ N ñ pxn � xN q P X1.
for i � 0 . . . N � 1 DWi s t xiWi �W .
De�ne Z �W0 X . . .XWN XX2. Then for i � 0 . . . N � 1 xiZ � xiWi �W � V .
For i ¥ N , xiZ � pxi � xnqZ � pxN qZ � X1.X2 � xNWN �W �W � V .

xn and yn Cauchy ñ pxyqn are Cauchy Let V . DW s t W �W � V .
DXxandXy s t xn.Xx and yn.Xy PW .
X � Xx XXy.
Then for n,m " 0 ym � yn and xm � xn P X then xmym � xnyn PW �W � V .

the 0 sequence form an ideal of Acauchy Let xn be a 0 sequence, and yn a Cauchy one, so that
it is bounded.
Let V . As yn is bounded there exists W such that yn.W � V . then for n " 0 xn P W , and
pxyqn P V .

� De�ne hatA � Acauchy{zero� seq.
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0.4 Ordered groups

Γ is an abelian ordered group.

Proposition 0.3 a ¥ b i� a�1 ¥ b�1.

D : a ¥ b ñ apa�1b�1q ¥ bpa�1b�1q , i.e. b�1 ¥ a�1. Applying this with a�1 and b�1 gives the
other inequality. �.

Dé�nition 0.3 A subset X of Γ is convex if @ x, y, z P Γ with x ¤ y ¤ z and x, z P X then y P X.

The convex sets are stable by intersection ; if Xi are convex sets that all contain 1, then YXi is
convex. If X is convex, X�1 � tx�1 | x P Xu is convex .

Dé�nition 0.4 If A � Γ , de�ne Aconv � tx P Γ | Da, b P Awitha ¤ x ¤ bu. This is the smallest
convex set that contains A.

Proposition 0.4 If H � Γ is a subgroup , Hconv is a subgroup.

Indeed if a ¤ x ¤ b , and a1 ¤ x1 ¤ b1 then aa1 ¤ xx1 ¤ bb1 , and a�1 ¥ x�1 ¥ b�1. �

Proposition 0.5 If X � Γ is a convex subset that contains 1 , then   X ¡ (the subgroup generated
by X) is convex.

D : Let's show that X.X is convex : let a, b, c, d P X and ab ¤ x ¤ cd. Put ta, b, c, du � tα, β, γ, δu
, s t α ¤ β, γ, δ. Then αβ ¤ ab ¤ x ¤ cd ¤ γδ, so that we can assume that a ¤ b ¤ c ¤ d. Then
ab ¤ cb ¤ cd.
If ab ¤ x ¤ cb, a ¤ xb�1 ¤ c , and xb�1 P X since it is convex, so since b P X , x � xb�1.b P X.X.
Otherwise cb ¤ x ¤ cd and b ¤ xc�1 ¤ d and x � xc�1.c P X.X.
De�ne X 1 � X X X�1 which is convex since 1 P X and X�1 , then   X ¡� Xn¡0X

1n is then
convex. �

The hypothesis 1 P X is necessary as shows the exempleX � t2u � pZ,�,¤q , where  2 ¡� 2Z
is not convex.

Corollaire 0.1 If X � Γ   pX Y t1uqconv ¡�  X ¡conv
Indeed   pX Y t1uqconv ¡�  X ¡ and is convex so   pX Y t1uqconv ¡�  X ¡conv. And
  X ¡conv� X Y t1u and is a group , so   X ¡conv�  pX Y t1uqconv ¡. �

De�ne Conv(Γ) as the set of convex subgroups of Γ. Then it is totally orderd for inclusion. It
has the lower and upper bound properties (take X and Y).
Call a convex subgroup   g ¡conv a principal subgroup. Note that a convex subgroup isn't neces-
seraly principal.
For instance take Γ � pZ,�,¤qpQq, that is the sequences indexed by Q almost everywhere zero, and
ordered by the lexicographic order. Then H?2 � tx P Γ|supppxq �s�8,?2su is a convex subgroup
, which is not principal, since any principal subgroup is of the form Ha � tx P Γ|supppxq �s�8, asu
for a P Q.
In fact for any b P R , Hb � tx P Γ|supppxq �s �8, bru is also a non principal subgroup.

Dé�nition 0.5 Let H � Γ a subgroup, then γ P Γ is co�nal in H if @h P H, Dn P N s t γn   h.

Proposition 0.6 g is co�nal in H i�   g ¡conv� H and g   1.

ñ : Since Dn s t 1 ¡ gn , we have 1 ¡ g. let h P H. If necessary, let's take h�1, so that h ¤ 1. Then
there exists a n ¥ 0 s t 1 ¥ h ¥ gn,ñ h P  g ¡conv.
ô : let h P H , here again, taking h�1 if necessary, we can assume that 1 ¥ h. Then there exists a
n P N s t gn ¤ h ¤ 1 , and then gn�1   h , so g is co�nal in H. �.

3



Proposition 0.7 Let pHiq be a increasing family of subgroups s t g is co�nal in each Hi. Then g
is co�nal in H � YHi.

D : if h P H then h P Hi for one i and then g being co�nal for Hi Dn s t gn   h . �

Corollaire 0.2 Let g   1. Then there exists a bigger convex subgroup H of Γ s t g is co�nal in
H. In fact H �  g ¡conv
D : The family F of convex subgroups G for which g is co�nal is non empty t1u works, then
H � YGPFG is a convex subgroup, and g is co�nal for H according to the previous proposition.
Clearly it is maximal for this property.
Now, g is co�nal in   g ¡conv, indeed x P  g ¡conv implies there exists n ¥ 0 such that gn ¤ x so
gn�1   x and so H �  g ¡conv. Now if h P H, takin h�1 if necessary we can assume h ¤ 1. Then
Dn ¡ 0 s t gn   h ¤ 1 and h P  g ¡conv. �

Remarque 1 Let X � Γ 1 � tg P Γ | g   1u. De�ne
ConvpXq � tH convex subgroup such that @x P X, x is co�nal in Hu. Since it stable by � , and
nonempty (t1u P ConvpXq ) we can (taking its lower bound, i.e. intersection) see it has a subgroup :
the smallest such that...Then from what we have done, ConvpXq � XxPX   x ¡conv.

1 F-adic rings

Proposition 1.1 A��� A�

D : Let a P A��, and V a 0 neigborhood. There exists W a 0 neigborhood such that W.W � V .
There exists N such that n ¥ N implies an P W . For each i � 0 . . . N � 1 there exsists Wi a 0
neigborhood s t aiWi � V . Then if U �W0 X . . .XWN�1 XW then for each i aiU � V . �

An adic ring is bounded . Indeed, if I is an ideal of de�nition of A , then if V is a 0 neigborhood,
there exists a n s t In � V and InA � In � V .
For S and T two susbsets of A, le S.T be subgroup of pA,�q generated by the elements st , s P S
and t P T .
Dé�nition 1.1 1. A topological ring A is f-adic if there exists a subset U and a �nite subset of

U , T such that tUn} n P Nu is a fundamental system of 0 neigborhood, and T.U � U2 � U .

2. A is called a Tate ring if it is f-adic and has a topologically nilpotent unit.

A ring of de�nition of a f-adic ring is an open subring A0 of A which is adic.

Proposition 1.2 (Prop 1) Let A ba a f -adic ring. Then

1. A has a ring of de�nition.

2. A subring A0 is a ring of de�nition i� it is open and bounded.

3. Every ring of de�nition of A has a �nitely generated ideal of de�nition.

It is then clear that a topological ring A is f-adic i� it has a an open subring A0, which is adic for
a �nitely generated ideal I (since in this case A is clearly f-adic).

D : Let W be the subgroup of A generated by U . Since U2 � U , we can conclude that W 2 � W .
Let B � Z�W . Then B is a subgroup of A for its additive law. It is also stable by multiplication :
pn�wq.pm�w1q � nm�mw�nw1�ww1 P B ( W 2 �W ). B is then a subring. It is open since it
contains U which is an 0 neigborhood , and a subgroup of a topological group is open i� it contains
a 0 neigborhood. For n ¥ 2 , B.Un � Un, because Z.Un � Un , and W.Un � Un�1 , and the fact
that U2 � U implies that Un�1 � Un. Hence the Un being a fundamental system of neigborhoods
of 0 implies that B is open.
Hence we can introduce A0 an open and bounded subring of A.
For n P N de�ne the �nite set T pnq � tt1.t2, . . . tn | ti P T u. Since T � U and T.U � U2,
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T pnq � Un. In particular since the Un form a fundamental system of neigborhood and A0 is open,
Dk s t T pkq � A0. Put then I � tpkq.A0. Let's show that In (seen here as an ideal of A0) is a
fundamental system of neigborood of 0 (in A, or A0, it is equivalent since A0 is open).
First, there exists a m s t Um � A0, and then for n P N, one easily sees that In � T pnkqA0 �
T pnkqUm � Unk�m, so In is a 0 neigborhhod.
Let V be a 0 neigborhood. Then there exists m s t U lA0 � V because A0 is bounded. But now
Im � T pmkqA0 � UmkA0 � UmA0 � V . Hence A0 is a ring of de�nition for I, and I is of �nite
type, which proves (i) and (ii).
Now if A0 is a ring of de�nition of A, as noted previously , A0 is bounded (in A0, so in A too) ,
since it is adic. So by what we have done, it has a �nitely generated ideal of de�nition.�

Now then, for A a f-adic ring , we will consider it coming with a couple pA0, Iq , with A0 a ring
of de�nition and I an ideal of de�nition. Then the In form a fundamental system of neigborhood
of 0.

Lemme 1.1 Let A be a f-adic ring, S and T bounded subsets. Then S.T is bounded.

D : let pA0, Iq a ring of de�nition, and In a 0 neigborhood. Dm s t SIm � In. Dp st TIp � Im.
Then, if s, t P S � T , and a P Ip , ta P Im so sta P In . Since In is a subgroup, one then conclude
that pS.T qIp � In. �

Corollaire 1.1 Let A be a f-adic ring.

1. If A0 and A1 are rings of de�nition, then A0.A1 and A0 YA1 also.

2. If B is a bounded subring, and C an open subring with B � C subseteqA , there exists A0 a
ring of de�nition with B � A0 � C

3. A�is a subring , and it is the union of all rings of de�nition.

D :
(i) the second point of the previous proposition shows that A0 and A1 are open and bounded. Then
A0YA1 is also open, and bounded . Then A0.A1 is also open (it contains A0) , and bounded accor-
ding to the lemma. So the second point of the proposition shows that there are ring of de�nition.
(ii) Let A1 be a ring of de�nition. Then B.A1 is a subring, bounded (previous lemma) , and open
(contains A0) , so is a ring of de�nition. Then A0 � A1 Y C is an open bounded subring so is a
ring of de�nition, and B � A0 � C.
(iii) Let pA0, Iq be a ring of de�nition for A. First 0 and 1 P A�.
Let now a, b P A�, and In be a 0 neigborhood. There exists m s t tak, k P NuIm � In and
tbkuIm � In. Then for r, s P N , arbsI2m � arpbsImqIm � arIn�m � arIm � In. Since
pa � bqk � °�

k
l

�
albk�l, one has pa � bqkI2m � In, and pabqkI2m � In, i.e. a � b and ab P A�.

So A�is a subring.
Now if X is bounded, then X � A� , in particular for any A0 ring of de�nition, A0 � A�. On
the other hand, Z is bounded (this is a consequence of the fact that some ring of de�nition exist,
that they are bounded and contain Z, more simply because ZIn � In). Let now x P A�. Then by
de�nition txnu is bounded, so B � Z.txnu � Zrxs is a bounded subring. B � A which is open
( !) , so with (ii) there exists a ring of de�nition A0 with B � A0, and then x P A0 So A�� YA0

A0.�

Proposition 1.3 If A is f -adic A��is a subring (except it doen't contain 1)

same proof

Corollaire 1.2 1. An adic ring is f adic i� it has a �nitely generated ideal of de�nition.

2. A f adic ring is adic i� it is bounded

3. Let A be a topological ring and B an open subring. Then A is f adic i� B is.
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D :
(i) ñ is a consequence of (ii) of the prop.

ð : already seen.
(ii) Let A be f-adic. If A is adic it is bounded (this is true without the assumption f-adic). Conversly
, if A is bounded, then (ii) of the proposition , since A is bounded and open in A f-adic, it is a ring
of de�nition, hence is adic.
(iii) If B is f-adic, one can �nd pB0, Iq ring of de�nition for B, and since B is open , pB0, Iq is also
a ring of de�nition for A hence A is f adic. Conversly, if A is f-adic, and B an open subring. Then Z
is a bounded subring, and Z � B which is open. Then accordingly to (ii) of the previous corollary,
there exists a ring of de�nition pA0, Iq for A such that A0 � B. This makes B a f-adic ring.

Remarque 2 Let A a topological ring.
* A�is not necesseraly a subring. For instance, A � R, ||8 then A�� r�1, 1s is not a subring.
*A�isn't necesseraly open, take R again, where r�1, 1s isn't open. From what we've seen, these rwo
properties are true for f-adic ring.
*A�isn't bounded.

exemple 1 Take C non reduced, and then a non zero s t an � 0. Put B � CrXs , and A � BX �
CrX,X�1s with the induced structure of a Tate ring (cf exemple 1.1 (iv) of [5]) then a

Xm P A�
for all m, because a

Xm qn � 0, but if there existed a p s t A�.pXpq � B � CrXs , we would
have a

Xp�1X
p � a

X P B which is absurd.
But here A is not reduced.

exemple 2 Put B � krXi, Xsi¥0{pX2
i � Xq , and A � BX with the induced Tate structure. Put an �

X1...X2n

Xn . Then a2
n � 1 , so amn depends only on the parity of m , and an P A�. So for every

m , we have am�1X
m � X1...X2m�2

X R B.
But here B isn't noetherian, nor integral pX1 �X2qpX1 �X2q � 0.

exemple 3 case with B noetherian and integral ?

Proposition 1.4 Let A be a height 1 valuation ring. Then k � qfpAq, with the topology induced
by A is a Tate ring.

D : A � k�is an open subring, and A is adic with a �nitely generated ideal of de�nition. Indeed,
let x P k��and x � 0, i.e. such that x P MA, i.e. 0   vpxq   1. Put I � pxq � A.x. Then I is an
ideal of de�nition of A. Moreover, x is a nilpotent unit of k.

Dé�nition 1.2 A ring homomorphism f : AÑ B beetwen f -adic rings is called adic if there exist
pA0, Iq and pB0, Jq rings of de�nition such that fpA0q � B0 and fpIq.B0 � J .

Lemme 1.2 (1.8(i)) If f : A Ñ B is an adic ring homomorphism and T � A is bounded, so is
fpT q.

D : let m , and so Jm � B0pfpIqmq a 0 neighborhood. Then Dp such that T.Ip � Im ñ fpT qJp �
Jm. �

Remarque 3 If f : AÑ B is a ring homomorphism, then fpA��q � fpB��q , and if f is adic, then
from the lemma, fpA�q � B�: because if tanu is bounded, so is ftanu � tfpaqnu.

1.1 Microbial valuation

Proposition 1.5 Let pK, vq be a valued �eld. Then the topologies of pK,�q having Ug � tx P
K | vpxq   gu, and Vg � tx P K | vpxq ¤ gu as fundamental system of neighborhood of 0 make K
a topological �eld and are the same.

Dé�nition 1.3 Call the height of Γ the number of convex (called isolated in [2] ) subgroups of Γ
(possibly 8).
If A is a valuation ring, call the height of A, the height of its value group.
[2, prop 5 �4] , the height of A is the number of non-zero prime ideals of A, i.e. its Krull dimension
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Proposition 1.6 (prop 8 �4 [2]) Γ is of height 1 i� Γ is a subgroup of pR,�,¤q.

Dé�nition 1.4 [6, p. 39] a non archimedian �eld is a toplogical �eld whose topology is de�ned by
a rank 1 valuation.

Proposition 1.7 Let K be a �eld, ν , ν1 2 valuations that are not unproper (unproper = trivial).
According to [2, prop 3 �7] they de�ne the same topology on K i� they are dependant, i.e. the ring
generated by Aν and Aν1 is not K.

Let A be microbial, v the valuation it induces on A and K � qfpAq, then there exists , w
another valuation, which is of height one such that they de�ne the same topology. Let B the
subring of K generated by A � Av and Aw. Then we have seen that B � K and so [2, prop 1 �4]
B is a valuation ring of K, let's call u its valuation. Then Aw � B � K, and [2, prop 4 �4] the
subrings containing Aw correspond bijectively with the convex subgroups of Γw � pR,�q. In that
cas the only convex subgroups of Γw are t0u and Γ itself, corresponding to the subrings Aw and
K. So B � Aw and Aw � A, i.e. we have proved that if A and B are dependant valuation ring and
B is of hight 1, then A � B.
If A is a valuation ring, Γ its value group , K � qfpAq there are correspondances :

tp prime ideals of Au Ø× tB | A � B � K,B subringu ØÕ tH � Γ, convex subgroupu
p ÞÑ Ap

mB XA � mB Ð[ B
B, Dλ : ΓA Ñ ΓB ÞÑ HB � Kerpλq
s.t.vB � λ � vA
vH � λH � vA Ð[ H

where λH : Γ Ñ Γ{H

These correspondances are [2, 3,�3 and 1 �4].
Hence A is of height 1 i� A is maximal for the subrings of K such that A � B � K i� ΓA doesn't
have any convex subgroups except t0u and ΓA i� A is of Krull dimensio 1 , i.e. its only prime ideals
are t0u and mA.

Proposition 1.8 Let Γ be an orderd group. Then it has a convex subgroup G � Γ maximal i�
Dx P Γ such that   x ¡conv� Γ.

D : ñ Let G � Γ with G convex and maximal. Let x P ΓzG. The convex subgroups being totally
orederd , and since x R G, G �  x ¡conv so   x ¡conv� Γ because of the maximality of G.
ð Let G � YH�Γ convex. Since convex subgroups are stable by union (for instance because they
are totally orderd), G is convex. Since x R H @H in the union, x R G hence G � Γ, and is maximal
for this property. �

Hence a valuation ring A is microbial
ô DA � B � K with B of height 1
ô DA � B � K with B maximal
ô A contains a prime ideal p � 0 minimal
ô Γ contains a convex subgroup maximal � Γ .
ô Dg P Γ such that Γ �  x ¡conv.
Dé�nition 1.5 [6, p. 40] A valuation ring A is microbial if it satis�es one of the following equi-
valent property :

1. qfpAq ( with the toplogy induced by A) is a non archimedian �eld.

2. qfpAq is a Tate ring.

3. qfpAq has a topologically nilpotnet unit.

4. A is non-discrete and adic

5. A has a prime ideal of height 1.
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D : 1 ñ 2 is proposition 1.4.
2 ñ 3 is in the de�nition of being a Tate ring.
3 ñ 1 : let x be a nilpotent unit. Then xn Ñ 0 , and it is esay to see that   x ¡conv� Γ and we
are done with the preceding remark.
1 ñ 4 : Since A is of height 1 , it is not discrete (t0u is not open) , and if B is a valuation ring
of height 1 of qfpAq that induces the same toplogy that A we can pick x P mB small enough such
that x P A (since A is a neigborhhod of 0) , and then we see that if I � A.x, then A is I-adic.
4 ñ 1 : if A isn't discrete and adic. Let i P Izt0u (this is possible precisely because A is not discrete
so I � t0u. Then @g P Γ, there exists a n such that In � ta P A | vpaq   gu hence vpiqn   g and
using the fact that vpAq ¤ 1 we have that   i ¡conv� Γ.
1 ô 5 was in the previous remark. �
example : Let K � kpx, yq, and v1 : K Ñ Z2

lex

P � °
apn,mqxnym ÞÑ �minppn,mq | apn,mq � 0u.

It is a valuation ([2, �3 , ex. 6] , with the general cas v : krΓ�s Ñ Γ ,
°
agx

g ÞÑ �minpg | ag � 0 ).
Let

v2 : kpx, yq Ñ Z°
an,mx

nym ÞÑ �mintn | Dmsuch that apn,mq � 0u
Let π : Z2 Ñ Z, pn,mq ÞÑ n. Then v2 � π � v1.Let's call Ti the toplogies generated by vi.
}T1 � T2.
Let Vpn,mq � tf P K | v1pfq   pn,mqu and Up � tf | v2pfq   pu.
Then @pn,mq, Un�1 � Vpn,mq so T1 � T2. Conversly , @pn,mq, Vpn,mq � Un so T2 � T1.�
In fact since v2 � π � v1, Av1 � Av2 and they are proper valuation, so cf prop 1.7 , they de�ne the
same toplogy. In this exemple , Av2 is not a valuation of height 1, but it is microbial.

a valuation not micorbial
Let Γ � ZpNq (the sequences in Z with �nite support), with the (reverse) lexicographic order, i.e.
x � px0, . . . xn, 0 . . .q with supppxq � t0 . . . nu , and the same thing for y , if xn ¡ yn then x ¡ y.
More generally , if xi � yi for i ¡ n and xn ¡ yn x ¡ y. We can then de�ne
v : kpxiqiPN Ñ ZpNq by vp° aνx

νq � �minpν | aν � 0q. It is easy to see that the convex subgroups
of Γ � ZpNq are the Γn � tx | supppxq � t0 . . . nuu �  x ¡conv for any x of the form x �
px0, . . . , xn, 0, 0 . . .q with xn � 0, and hence there doesn't exist a proper maximal convex subgroup.
Hence Av is not micorbial. (we could also have seen, that for any x ,   x ¡conv� Γ)

Remarque 4 We can extend the de�nition of being microbial to �elds (this is actually nothing
since a �eld is a valuation ring) , and to valued ring v : A Ñ Gamma, by saying that if B �
A{supppvq and K � qfpBq , K is microbial. All the preceding properties work as well.

Here is an exemple with

A
v //

φ

��

Γ0

i

��
B

w // H0

with v � w � φ , w microbial but v not microbial.
Inded take v not microbial on A � k a �eld. Then put B � krxs , H � Z � Γ and wp° aiX

iq �
maxpp�i, vpaiqq | ai � 0q. It is a microbial valuation on B for instance   p1, 0q ¡conv� H , or 0�Γ
is a maximal proper convex subgroup).

2 Valuation Spectrum

2.1 compacity, �lters

cf[3, �6,7,9]
Let X be a topological space, F a �lter on X , x P X, Bpxq the �lter of neigborhhod of x. We say
that G is �ner than F if G � F
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Dé�nition 2.1 x is a limit point of F if it is �ner than Bpxq, i.e. every neigborhhod contains an
element of F .

B is said to be a base of �lter if it is stable by �nite intersection, and doesn't contains H.

Dé�nition 2.2 Let B be a base of �iter, x is adherent to B if for every B P B, x P B̄.
If F is �ner than G and x adherent to F , then it is also adherent to G.

Proposition 2.1 (�6 , cor 2) Let Φ � tF〉u a set of �lter. There exists a �lter �ner that all the
Fi i� for all F1 . . .Fn P Φ and Fi P Fi , F1 X . . .X Fn � H.

So x is adherent to F
ô @F P F and U P Bpxq, F X U � H.
ô D a �lter G �ner than F and Bpxq. Indeed consider for U P Bpxq the �lter FU � tV } U � V u ,
and apply the proposition with Φ � tFU | U P BpXqu Y tFu.
ô D a �lter G �ner thant F which converges to x.

Corollaire 2.1 Let U be a ultra�lter. U converges to x i� x is adherent to it.

Dé�nition 2.3 (Prop) X is quasi compact if it satis�es one of the following properties :

1. every �lter has an adherent point

2. every ultra�lter is convergent

3. Every family of closed set whose intersection is empty has a �nite subfamily whose intersection
is empty.

4. Every open cover has a �nite subcover.

D : (i) ñ (ii) Let U be a ultra�lter, it has an adherent point, and so converges to it.
(ii) ñ (i) : let F be a �lter, U a ultra�lter which is �ner, it converges to x say , so x is adhrent to
U and also to F .
(i) ñ (iii) Let tFiu be a family of closed subsets whose intersection is empty. Let's suppose that
every �nite intersection is non empty. Then there exists a �lter F that contains all the Fi. Let x
be an adherent point, so x P F̄i � Fi for all i, which contradicts XiFi � H.
(iii)ñ (i) Let F be a �lter , and suppose it has no adherent point. Then @x P X, DFx P F with
x R F̄x, and since Fx P F , F̄x too. So the F̄x have the �nite intersection property , however by
construction, their intersection is empty, which contradicts (iii).
(iii) and (iv) are dual. �

2.2 remark on compacity

A (open) basis of X is a family B (of open subsets necesseraly from the following de�nition)
, such that the open of X are the (arbitrary) union of elements of B. Dually, it will be called a
closed basis, if the closed sets are the intersection of elements of B.
A (open) sub-basis of X is a family C (of open subsets necesseraly from the following de�nition) ,
such that the open of X are the (arbitrary) union of �nite intersection of elements of C. Dually, it
will be called a closed sub-basis, if the closed sets are the intersection of �nite union of elements of
C. The family B of �nite intersection of C is then clearly a basis, called the basis generated by C.
Let C be a subbasis, and B the basis it generates. Taking the complementary, we give the same
name to the (sub)-basis of closed or open sets by taking the complementary
Then the following are equivalent :
X is quasi compact
ô Every open cover has a �nite subcover
ô Every open cover by elements of B has a �nite subcover.
ô Every family of closed set of B whose intersection is empty has a �nite subfamily whose inter-
section is empty.
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Proposition 2.2 The following are equivalent :

1. Every family of closed set of B whose intersection is empty has a �nite subfamily whose
intersection is empty.

2. Every family of closed set of C whose intersection is empty has a �nite subfamily whose
intersection is empty.

D : clearly since C � B (i) ñ (ii).
Let's suppose (ii), and let F � tFiu be a family of closed subsets of B with the �nite intersection
property. Let's show that XiFi � H.
Let A be a maximal family of closed subsets of B such that A � tFiu and has the �nite intersection
property. (such an A exists with Zorn's Lemma). So XFPAF � XiFi so it is enough to show that
XFPAF � H. We now suppose tFiu maximal. It is eqsy to see that it implies that the family is
stable by �nite intersection. Every Fi can be written : Fi � F 1

i Y . . . Fni (should write ni instead

of n...) Let's show that for every i there exists a j with F ji P F
Let j P t1 . . . nu. If @G P F GX F ji � H then the family F Y tF ji u still has the �nite intersection
property and we are done. Otherwise, for all j there exists a Gj P F such that Gj XF ji � H. Then

G � XjGj P F , but @j , GX F ji � H so GX F � H, which is a contradiction (with the FIP).

So @i , there exists a ji such that F jii P F . Then XiF jii � XiFi and since by construction f jii P C
(ii) implies that XiF jii � H, so XiFi � H.

Here is another proof : let's show that X is quasi compact, i.e. satis�es the property, every
ultra�lter converges to some x. Indeeed le tU be a ultra�lter and let's suppose it doesn't converge
to any x. Then for every x we can �nd F � U such that x R F̄ . Then there exists F1 . . . Fn some
closed of C such that G � F1Y . . .YFn � F̄ , and x R F1Y . . . Fn � G. Then G P U so there exists
one i such that Fi � Fx P U since it is an ultra�lter. But the Fx P C , they have the FIP, but have
empty intersection since @x, x R Fx.

�

We can then deduce that :

Proposition 2.3 X is quasi compact
ô Every family of closed set of C whose intersection is empty has a �nite subfamily whose inter-
section is empty.
ô Every open cover by elements of C has a �nite subcover.

2.3 constructible sets

cf EGA0 �9.

Dé�nition 2.4 Z � X is retrocompcat i� @U qc open, Z XU is qc (note that it is equivalent that
Z X U is qc in Z or in U since this only depend on the topology of Z X U), i.e. if i : Z � X ãÑ X
is quasi-compact.

Dé�nition 2.5 S � X is constructible if it is in the boolean algebra (X,Y,c) generated by the open
retrocompcat.

Proposition 2.4 Let V � X retrocompcat and U open in X , then V X U is retrocompact in U .

D : let W � U a qc open. Then pV XUq XW � V XW . Since W is qc in X, and V retrocompact,
V XW is qc in X , so also in U . �

cf rq après 9.1.1 :

Remarque 5 1. if V1 and V2 are retrocompact, V1 Y V2 too.
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2. If V1, V2 are retrocompact open, then V1 X V2 too.
Indeed ; (i), if U � X is open qc, V1 X U , and V2 X U are qc. Quasi compact sets are stable by

�nite union so, pV1 Y V2q X U is qc.
(ii) If U � X is qc open , V1 X U is qc open, so V2 X pV1 X Uq too.
This is probably the reason why in EGA , the retrocompact sets are introduced,
because, the retrocompact open are stable by intersection, wheras qc not necesseraly
(unless you make the assumption X is quasi-separated...which is tautological).

If X is Haussdorf, U is qc open, i� U is compact open i� U is compact open-closed.

Proposition 2.5 (EGA0 9.1.8) If U � X is open.

1. If T is constructible in X, T X U is constructible in U

2. If U is in addition retrocompact, the converse is true : if T � U is constructible in U , it is
also constructible in X.

Dé�nition 2.6 T � X is locally constructible, if for every x P X there exists V an open neighbo-
rhood of x such that T X V is constructible in X.

Dé�nition 2.7 (EGA4 1.9) E � X is pro-constructible (resp. ind-constructible) if for every
x P X there exsists V a neigborhood of x such that V XE is an intersection of locally constructible
sets (resp union).

Remarque 6 (cf EGA0 9.1.11) If U � X is open, and T locally constructible in X, then U XT
is locally constructible in U .
(EGA0 9.1.10) If X is quasi compact, and has a basis of open retrocompact, then T is constructible
i� it is locally constructible.
(EGA4 1.9.4) Under these hypothesis, T � X is pro-constructible i� it is an intersection of
constructible : indeed then we can cover X by some �nite retrocompact open (since retrocom-
pact open ñ qc) , Xi, say T � YiT X Xi, and T X Xi � YjT ij is constructible in X , then
T � Yi XjPJi T ij � Xpj1,...,jnqPJ1�...Jn Yi�1...n T

i
ji
is an intersection of constructible sets.

2.4 spectral spaces

Dé�nition 2.8 X is quasi-separated if for every qc open U and V , U X V. is qc
Said di�ernetly, X is quasi-separated i� the qc open are retrocompact.

Moreover, if X is quasi-compact quasi-separated, the qc open are precisely the retrocompact open.
To give a counter-exemple, let X � SpecpkrTisi¥0q, and U � XztpTiqiu. De�ne Y as two copies of
X (say X1 and X2 , glued along U . Then like X, Xi are qc, but X1 XX2 � U isnot qc.

Remarque 7 Let X be a topological space such that there exists a basis for the topology B � tUu
which are qc, and stable by �nite intersection. Then, if V,W are qc open of X , V XW is also qc.
Indeed write V � Yi�1..nVi with Vi P B. (this is possible because V is qc and B a basis. Do the
same for W , then V XW � Yi,jVi XWj is then a �nite union of qc sets, so is qc. Hence X is
quasi-spearated.
If X is a separated scheme, it veri�es these hypothesises, so the intersection of two quasi compact
is quasicompact.

Dé�nition 2.9 [4, 0] X is spectral if it is T0 , quasi-compact , the qc open form a basis and are
stable by �nite intersection, and every non empty closed irreducible subset has a generic point.

Remarque 8 In [5, 2] the de�nition is with a unique generic point, but without T0. This is equi-
valent : suppose that X is T0 if x̄ � ȳ x � y, let U be an open s t x P U, y R U . Then x P ȳ � U c

contradiction. Conversly if the generic points are unique, let x � y , then x̄ � ȳ , say, x̄ � ȳ, it
implies x R ȳ , then x P ȳc which separates x and y.
From the previous remark, if X is spectral, X is quasi-separated.
It also implies, that in the de�nition, you can only require that there exists a basis of the topology
which with qc open, which are stable by �nite intersection (this is the statement ([4] , prop4 (i) ô
(ii)).
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Proposition 2.6 Let X be a spectral space. An open U is retrocompact i� it is quasi compact.

D : ñ If U is retrocompact, since X is qc, X X U � U is qc.
ð : Let V be an open qc. Then U X V is qc. �

In the following part, X will always be a spectral space.

Proposition 2.7 T � X is locally constructible i� T is constructible.

D : T loc constructible i� @x DVx x�neigborhhod, such that T X Vx is constructible in Vx
ô DX � X1 . . . YXn such that T XXi is constructible in Xi, and Xi qc , using the fact that qc
open form a basis, and that X is qc, and that interecting with an open preserves constructible sets
ô T constructible, since the Xi being quasi-compact, they are retrocompact, and then T X Xi

constructible in Xi implies it is constructible in X , and T � YipT XXiq. �

Proposition 2.8 T is proconstructible i� T is an intersection of constructible sets in X.

We only have to show ñ.
T proconstructible i� @x DVx such that E X Vx is an intersection of locally constructible in Vx
ô @xDVxqc such that T X Vx is an intersection of locally constructible. (using the fact that qc
form a basis, and the fact that locally constructible are preserved by intersecting with an open, so
intersection of locally constructible are preserved when intersecting with an open )
ô @x DVx open qc such that T X Vx is an intersection of constructible (using the fact that Vx is
an open retrocompact of X
ô X � X1Y . . . Xn with Xi qc and T XXi intersection of constructible in Xi. Then since Xi is qc
so retrocompact , we see that T XXi is an intersection of constructible of X, say T XXi � XCi,j .
Then T � Yi�1..npXJiCi,jq � XJ1�...Jn Yi�1..n Ci,j which is an intersection of constructible of X.

Remarque 9 So what [4] calls the patch topology Xpatch, is what EGA4 1.9.13 , calls the construc-
tible topplogyXcons. The open subsets are the ind-constructible subsets , and the closed pro-constructible.

Proposition 2.9 Xcons is compact.

D : It is Haussdorf, because D open qc U that separates two points x, y , so U and U c are open
that separate x, y.
If whe use the remark on compacity, let's note C the subbasis of closed sets of Xcons formed by
(arbitrary) closed and qc open (from X). Then we have to check that a family A of C which has
FIP has non empty intersection. WIth Zorn,if we take B a maximal family with the FIP containing
B , its intersection will be smaller than that of A , so we can restrict to B , i.e. suppose that A is
maximal with the FIP.
A � F Y U , the closed, and the qc open. Then, because X is quasi-compact , G � XFPFF is a
closed non empty. Then G has the FIP F ,U (for the qc open , this is because the Fi XU have the
FIP , that U is qc so their intersection, which is GX U is non empty), so by maximality , G P A.
If it wasn't irreducible , let's write it G � G1YG2 .Then if AYtGiu i � 1, 2 doesn't have the FIP
, we would have an Ai X Gi � H , whence G X pA1 X A2q � H but A1 X A2 P A absurd. So say
G1 P A so G1 � G and G is irreducible, say G � ḡ , then g P F for all closed. and if g R U for one
open , ḡ X U � H , absurd.
second proof : Let F be a family of B , the closed-basis of Xcons of pro� constructible sets formed
by the F X U , F closed, and U qc open, with the FIP. With Zorn's Lemma, we can assume it is
maximal. Then for F YU P F , F or U P F , indeed oterwise, there are A,B P F with AXF � H
and B X U � H, then F X A X B � H which contradicts FIP. Let then F1 be the closed sets of
F and Let then F2 be the open sets of F . One has XFA � XF1YF∈A. Then F � XF∞A is a non
empty closed set (by hypothesis). It is irreducible , bacause if F � F1YF2 with the same argument
that above one shows one of the Fi is F . So since X is spectral, F � ¯txu for some x P X, and as
above one shows x P XFF . �

Corollaire 2.2 If X is spectral, the constructible subsets of X are exactly the closed-open subsets
of Xcons
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D : ñ If U is qc open in X, by de�nition, it becomes a closed open of Xcons, and since the closed-
open are stable by �nite boolean combination we are done.
ð Let U be a closed open ofXcons. It is then compact , since closed in a compact. Since by de�nition
the U X V c form a basis of Xcons for U, V qc open of X, we can write U � Yi�1...nUi X V ci with
Ui, Vi qc open, so U is constructible. �

Proposition 2.10 ([4] prop 4) Let X be quasi-compact, T0, has a basis formed by qc open that
are closed under �nite intersecion. The following are equivalent :

1. X is spectral

2. Every nonemty irreducible closed subspace has a generic point

3. every family of qc open of a closed subspace with the FIP has �nite intersection.

4. Xcons is compact and has a basis of closed-open sets.

5. Xcons is quasi-compact

6. A family of pro-constructible sets with the FIP has non empty intersection.

D : (i) ô (ii) this is a consequence of 7.

(i) ñ (v) is 2.9
(v) ñ (vi) is just the alternative de�nition of quasi-compacity , and the fact that the pro-
constructible are the closed sets of Xcons.
(vi) ñ (iv) Xcons is then quasi-compact. Since the qc open form a basis of X, Xcons is Haussdorf
(so compact), and in fact by de�nition, the sets of the form F X U with U qc open, and F the
complementary of a qc open form by de�nition a basis of Xcons. Their complementary is F c Y U c

are also open in Xcons , so F X U is close-open.
(iv) ñ (iii) : Let F be a closed set and tUiu a family of quasi-compact open of F with the FIP.
Each Ui is qc , Ui � F X Vi where Vi is open in X. Hence since the qc open form a basis of X,
we can write Vi � YJiWj , and since each Ui is quasi-compact, there esists a �nite subset (say
t1 . . . nu such that Ui � Y1...nWj XF . Hence, each Ui is proconstructible in X , and since Xcons is
compact 2.9, they have non empty intersecion.
(iii)ñ (ii) Let F be an irreducible closed subset. Put G � XUnon-empty qc open ofFU . It is non empty
(a space Z is irreducible ô �nite intersecions of non empty open are non empty) , so the set of
non-empty qc open of F has FIP and we use the hypothesis.
Suppose x � y P G . Then, DU a qc open of X such that say x P U and y R U (because X is T0 and
there is a basis of qc open. Then U X F is qc open and non empty, so y R G which is absurd. So
G � txu. Suppose ¯txu � F . Then V � F z ¯txu is a non empty open of F so contains a non empty
qc open of V of F , but x R V contradiction. �.

Proposition 2.11 ([4] Prop 7 , cf also [5] (rem 2.1 (vi) ) Let pX,Sq a compact space , B �
tUu a family of closed-open sets (hence compact) of X. Let T the topology of X which has B as a
sub-basis.
Then pX, T q is T0 ô pX, T q is spectral, and in that case the constructible subsets of pX, T q are
precisely the closed-open subsets of pX,Sq

D : ñ is clear .
ô Taking �nite intersection of B doesn't change the fact it is formed by closed-open sets of pX,Sq
, so we can assume B is a basis stable under intersection of T .
By de�nition, T � S, hence it remains quasi-compact, and has a basis (B) stable under intersection
of quasi-compact open and is T0 by hypothesis. So according to 2.10 we just have to prove that
pX, T qcons is compact.
Now, let V be a quasi-compact open of pX, T q , so by a quasi-compacity V � Yi�1...nUi with
Ui P B. And V c � Xi�1...nU

c
i . We can deduce from that :

ι : pX,Sq Ñ pX, T qcons is continuous. Since it is bijective, and pX,Sq is compact and pX, T qcons
is Hausdor�, it is a homeomorphism (the direct image of a closed is the direct image of a compact
so compact). So in fact pX,Sq � pX, T qcons which is then compact
The fact that constructible of pX, T q are the closed-open of pX,Sq is then 2.2 . �
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Remarque 10 X a spectral space ; T proconstructible. Then [5, 2.1(i)] T is qc in the topology
of X and Xcons. In particular, since X is constructible, it is quasi-compact in Xcons. Note that ,
Xcons is Haussdorf : indeed, X is T0, so if x � y, let say U a neighborhood of x not containing y.
Since X is spectral, we can assume U is qc , so U and U c are open in Xcons and separate x and
y. So , Xcons is compact.

Dé�nition 2.10 (cf [4, 0] or [5, 2.2.1]) a map f : X Ñ Y between spectral spaces is said spectral
if it is continuous and f�1 preserves the qc open (which actually implies continuity)

Proposition 2.12 f is spectral i� f is continuous and f : Xcons Ñ Ycons is continuous.

ñ let V be an open of Ycons , i.e. a union YiVi with each Vi constructible, i.e. boolean combination
of qc open. Since f�1 commutes with boolean combination and preserves qc open f�1pViq is
constructible.
ô : if V is a qc open, it is constructible and f�1pV q is constructible open, so ([5, 2.1 (i)]) open qc.
�

Proposition 2.13 (Dickmann p.90) Let f : X Ñ Z and g : Y Ñ Z spectral maps. Then
π : X �Z Y Ñ Y (taken in Top ) is spectral.

D : π factrizes as : X �Z Y aÝÑ X � Y
bÝÑ Y . X �Z Y is closed, so proconstructible in X � Y , so

[D 3.3.1] a is spectral. with [D p88] , b is spectral too. �
Are qc map in Top stable by base change ?

Dé�nition 2.11 A topological space X is locally spectral if there exists a covering Xi such that
each Xi is spectral.

Remarque 11 In [4] Theorem 9, it is proved that locally spectral spaces are precisely the underlying
topological spaces of schemes (what he called prescheme).

Proposition 2.14 (cf [6] p44) A locally spectral space X is spectral i� it is quasi-separated and
quasi-compact.

D : ð is obvious. Then suppose X locally spectral, quasi-compact and quasi-separated. Then co-
ver it with Xi, i � 1 . . . n that are spectral. For each i consider the inclusion : fi : Xi Ñ X. If
U is a qc open of X, then f�1

i pUq � U X Xi is quasi compact (since X is quasi-separated). We
deduce that fi : Xicons Ñ Xcons is continuous. Then since one easily sees that pX1

²
. . . Xnqcons �

X1cons

²
. . .
²
Xncons, one sees from the second one that it is compact, and f : pX1

²
. . . Xnqcons Ñ

X is continuous and surjective, so Xcons is compact. Now, X is T0 , quasi compact and quasi-
separated, (this is local property (contrary to being T2 ) , so [4, Prop 4 (v) ] X is spectral.�

Proposition 2.15 If f : X Ñ Y is spectral , and T � X proconstructible, then fpT q is procons-
tructible.

D : T proconstructible mean T closed in Xcons, since f spectral ô f : Xcons Ñ Ycons continuous
and that Xcons and Ycons are compact, fpT q is compact, so closed in Ycons, so proconstructible. �

Proposition 2.16 if f : X Ñ Y is spectral and surjective, S � Y is constructible (resp. procons-
tructible) i� f�1pSq is.
ñ is OK .
Conversly , by surjectivity of f , we have S � fpf�1pSqq and Sc � fpf�1pSqcq . If f�1pSq is
constructible i.e. closed open in Xcons, then f

�1pSqc is closed to , their images are then S , Sc ,
which are both closed in Ycons , so S is closed-open in Ycons, so constructible in Y . And if f�1pSq
is proconstructible, S � fpf�1pSq is proconstructible too. �
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Proposition 2.17 (Dickmann, scwartz Tressl, Spactral Spaces, theorem 3.3.1) . Let X be a spec-
tral space, and T � X. Then T is proconstructible i� T , with the induced topoloy, is spectral, and
i : T ãÑ X is a spectral map. Moreover constructible (resp qc open, resp complementary of qc open)
in T , are the traces of constructible(resp. qc open, resp complementary of qc open) in X.

From that we deduce somme consequences of [5, 2.1] when T is a proconstructible of X
(i) T is quasi-compact for X and Xcons. In particular an open subset is constructible i� it is qc,
and a closed subset is constructible i� its complementary is quasi compact (as a closed subset of a
quasi-compact set, it is anyway quasi-compact). Indeed T � i�1pXq with X qc and i spectral so T
is qc in X. And T is closed in Xcons so compact in Xcons.
(ii) T is constructible i� T c is proconstructible. Indeed ñ is clear, and if T c is proconstructible, T
is closed-open in Xcons so constructible 2.2.
(iii) T � YtPT ttu.
Let x P T and U � tU | U is a quasi-compact open neigborhhod of xu. Hence x P XUPUU .
Since x P T , @U P U , U X T � H. More generally, if U1 . . . Un P U , U1 X . . . X Un X T �
pu1 X Y q X . . . X pUn X T q � H. So the tU X T uUPU have the FIP , and are proconstructible in
X since T is and the U are, so their intersection is not empty (since Xcons is compact). Let then

t P XUPU pU X T q, and V � ttuc which is then open. If x P V , there exists U P U such that
x P U � V . But by hypothesis t P U � V which is absurd. So x P ttu.

2.5 Valuations

Proposition 2.18 ([2] , Prop 9 �3) A valuation ring A is noetherian i� a discrete valuation
ring (i.e. Γv � Z) i� principal (because a �nitely generated ideal of a valuation ring is principal)

For instance take v : kpx1, x2q � AÑ Z2
lex°

aνx
ν ÞÑ �minpν | aν � 0u. Then R the associated valuation ring is not noetherian. Indeed, its

ideal correspond to the interval of Z2 � . Among them Yn¥0s �8, p�1, nqs is not principal, i.e. of
the form s � 8, as. This ideal is R.p x1

xn
2
qn¥0.

Remarque 12 Let v : AÑ Γ0 a valuation, R its valuation ring of the residual �eld of v. What is
the link beetwen A and R being noehterian ?
If R � K is a vualtion ring and R � A � K an intermediate valuation ring, what link betwen A
and R being noehterian ?
No link because R will be noetherian i� Γ � Z. So for the �rst question, take v : A � CprT s Ñ
pQ,�,¤q , ° aiT

i ÞÑ maxp|ai|q A is noehterian but Γ � Z, i.e. A noetherian but not R.
On the contrary, v : A � krxisiPN Ñ Z,

°
Aix

i
0 ÞÑ �pminpi}Ai � 0q where the Ai P krx1, . . .s.

Now if R � A � K then if R is noehterian it is a discrete valuation ring , and the only possiblities
for A are R and K.
But if R is not noetherian, there will exist a intermediate A noetherian (ie . discrete valuation ring)
i� there exists a quotient Γ{H � Z with H necesseraly a (the) maximal proper conves subgroup.
Sometimes it is the case, for instance v : krx, ys Ñ Z2,

°
apn,mqxnym ÞÑ �minppn,mq |apn,mq � 0u,

sometimes not, for instance in the case of a non microbial valuation.

Proposition 2.19 Let v : A Ñ Γ0 a valuation with Γ � Γv, and α : Γ Ñ G such that v � α � v.
Then v is injective.

D : Otherwise let h P Kerpαqzt1u. Then there exists x P K the residual �eld of v with vpxq � h � 1,
but the same calculus in Kw leads vpxq � 1. �

Remarque 13 A valuation on A : v : A Ñ Γ0 is equivalent to give p � v�1p0q a prime ideal of
A and a valuation v on qfpA{p which is also equivalent to give an equivalent class of morphism

A
φÝÑ k with k a valued �eld, where pφ, kq � pk1, φ1q if there exists an morphism of valued �eld

ι : k Ñ k1 such that φ1 � ι � φ.
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2.6 Embedding in PpA� Aq

Proposition 2.20 (2.2) Let A be a ring, | a binary relation on A such that

1. a|b or b|a @a, b.
2. If a|b and b|c then a|c.
3. a|b and a|c implies a|b� c.

4. a|b implies that ac|bc
5. ac|bc and if not 0 � c then a|b.
6. 0 � 1.

Then there exists a unique equivalence class of valuation v s t | � |v where a|vb i� vpaq ¥ vpbq.
D : Let � be the e binary relation de�ned by a � b i� a|b and b|a.
This is an equivalence relation . Indeed re�exivity is a consequence of (i) , transitivity from (ii) ,
and symetry is obvious.
Let's not p � ta P A | a � 0u � ta | 0|au. indeed , if a � 0 then 0|a, and conversly, if 0|a , since
anyway 1|0 (because of (i) and (vi) ) with (v) taking c � a we get a|0, hence a � 0.
p is a prime ideal : �rst, if a, b P p , 0|a and 0|b so with (iii) , 0|a � b , hence p stable by �. and
with (iv) taking c � �1 we have 0| � a so p is a subgroup. In fact (iii) gives that p is an ideal. Now
if a R p and ab P mathfrakp, then 0 � a (cf previous remark) , 0|ab, i.e. 0.a|b.a and then with (v) ,
0|b, i.e. b P p. So p is prime.
Put B � A{p. Then | factorises through B. Indeed let a, b P A and c P p. If a|b , then since anyway
a|0 and 0|c by hypothesis, a|c so (iii) a|b� c hence if a � a1modp we have a|b i� a1|b. In particular
a � a1 and we conclude using the transitivity of | that | factorises throug A{ �, and hence also
throug B, and that this relation satis�es also piq � pviq. Actually (v) becomes even ,
ac|bc and c � 0 implies a|c.
Let K � qfpBq. Let x P K , with x � u

v � u1

v1 . Then v|u i� u1|v1.
Indeed if u � 0 then u1 � 0 and the two assertions are true.
Otherwise if v1|u1 then v1u|uu1 but uv1 � u1v so vu1|uu1 and since u1 � 0 , v|u.
It then makes sense to de�ne R � tx P K,x � u

v | v|uu.
This is a valuation ring :
1 P R.
If uv and u1

v1 P R then v|u hence vv1|uv1, v1|u1 so uv1|uu1 hence by transitivity vv1|uu1.
Also vv1|uv1 and vv1|u1v so (iii) vv1|uv1 � u1v, hence uv1�u1v

vv1 � u
v � u1

v1 P R.
Finally, if x � u

v P K, then by (i) , u|v or v|u so x or x�1 P R.
R is then a valuation ring say with K

wÝÑ Γ de�ning its valuation, and if f is the natural morphism
f : AÑ B Ñ K, then v � w � f is a valuation , and by de�nition of R , if b R p, a|b i� ā

b̄
bar0u

Remarque 14 We could consider Γ0 � pA{ �,�q, check it is an oredred monoid with , a ¥ b i�
a|b. Then Γ � Γ0zt0̄u would be an orederd submonoid. Then v : A Ñ pΓ0,¤q is �a valuation in
an orderd monoid�. So if we could �nd pΓ,¤q ãÑ pG,¤1q an injection of orderd monoid with G a
group, we could a�rm that v comes from a �real� valuation (with value in a group).
This could lead to consider the forgetfull functor :
for : Ab Ñ tcommutative monoids u, check that it has a right adjoint i de�ned by ipMq � pM Y
M�1q�{   paq.pbq � pabq, aa�1 � 1, ab � ba, pabq�1 � pa�1q.pb�1q ¡. Then wonder if
*the natural morphism M Ñ ipMq is injective ?
*Can we extend the oredering of M to ipMq ?
It won't be automatic : indeed if Γ � t�n,�pn � 1q, . . . ,�1, 0u monoid for a.b � maxp�n, a � bq.
Then
v : krXs Ñ Γ0

P � 0 ÞÑ �minpn� 1, valXpP qq
0 ÞÑ �n� 1
and identifying �pn � 1q with a null element is a �monoidal� valuation. But pΓ,¤q doesnt in an
ordered group (it has torsion, and ordered groups don't), v doesn't commes from a valuation : |v
veri�es piq � pivq and pviq but not (v) :
0.X|vXn.X � Xn�1 , 0 � X , but however 0 � Xn.
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We then consider φ : SpAq Ñ PpA�Aq de�ned by
φpvq � |v with a|vb if vpaq ¥ vpbq. Then the 6 conditions in the previous proposition show that
impφq is a closed set of PpA�Aq, that we endow with the product topology.
Moreover φ is injective : indeed if | � |v � |w then we easily see that supppvq � supppwq � ta P
A such that 0|au hence,K the residual �eld of v and w are the same, and the valuation ring on them
induced by v and w are the same (because |v � |w) so they induce the same valuation on K. Hence
through φ we identify SpAq with a closed subset of PpA�Aq. It then induces a topology pSpAq, T1q
. PpA � Aq being compact, and SpAq closed, pSpAq, T1q is compact. In it the subsets of the form
tv | vpaq ¤ vpbq � 0u � tv | vpaq ¤ vpbqu X tv | vpbq ¤ vp0quc are open-closed by de�nition of the
product topology on PpA� Aq. The topology T they generate is T0 : if v � w, P SpAq then there
exists a, b P A such that vpaq ¤ vpbq and wpaq ¡ wpbq . If vpbq � 0 then v P tx|xpaq ¤ xpbq � 0u
and not w. Otherwise vpaq � vpbq � 0 so w P tx | xpbq ¤ xpaq � 0 and not v.

Lemme 2.1 Endow PpXq � t0, 1uX with the product topology. Then the closed open subsets are
the �nite boolean combination of subsets Px � tU � X | x P Uu.
D : Let V be a closed open subset of PpXq. Since PpXq is compact (Tychinov) V is compact .
Now by de�nition of the product topology , the Px and their complementary form a sub-basis of
PpXq so we can conclude.�

In SpAq the sets Ppa,bq correspond precisely to tv | vpaq ¥ vpbqu. Hence using 2.11 we have :

Proposition 2.21 SpAq be endowed with the topology whose subbasis is the tv | vpaq ¤ vpbq � 0u.
SpAq is spectral and its constructible subspaces are the boolean combination of tv | vpaq ¤ vpbqu.

2.7 specializations

Proposition 2.22 (cf [5] 2.2) Let v : AÑ Γ0 and H a convex subgroup, w � v{H : AÑ pΓ{Hq0
is called e secondary specialization. v P ¯twu in SpvpAq.

D : let U � tx | xpfq ¤ xpgq � 0u be a basic neighborhood of v, i.e vpfq ¤ vpgq � 0. Then
wpfq ¤ wpgq and vpgq � 0 , i.e. vpgq P Γ , so wpgq P Γ{H and is � 0, so w P U . �

exemple : v : A � krx, ys vÝÑ Z2
lex°

an,mx
nym ÞÑ �mintpn,mq|an,m � 0u

There are 3 convex subgroups : t1u � Γ0

p0,Zq � Γ1

Z � Γ2

cΓv � t1u, and then :
v{Γ0 � v , v{γ1 � vx (valuation of x).
v{Γ2 � vdiscret.
v|Γ0 : A Ñ t1, 0u with v|Γ0pfq � 1 i� vpfq � 1 , i.e. if fp0, 0q � 0, i.e. it factorises through
AÑ k, f ÞÑ fp0, 0q , and then with the discrete valuation on k.
v|Γ1 : AÑ Z0 ,
f ÞÑ vpfq if vpfq P p0,Zq, 0 otherwise. factorises through A Ñ krys, f ÞÑ fp0, yq and then the y�
adic valuation.
v|Γ2 � v.
exemple of the unit ball Let A � ktT u , r � |lambda|   1, λ P k with k a non-archimedian
�eld. De�ne :
ηr :

°
aiT

i ÞÑ maxp|ai|riq � R
η¡r :

°
aiT

i ÞÑ maxp|ai|ri,�iq � R� Z
η¡r :

°
aiT

i ÞÑ maxp|ai|ri, iq � R� Z
From what we have seen above since η r and η¡r are secondary specializations of ηr (with H �
0�Z), they both belong to ¯tηru. The contrary is false (this is a consequence of SpvpAq being T0 )
, concretely, if U � tx} xpT q ¤ xpλq � 0u then ηr and η r P U , but η¡r doesnt. In the same way :
V � tx} xpλq ¤ xpT q � 0u then ηr and η¡r P V , but η r doesnt. So the specialization described
above is the only one existying between these three points.
This shows the di�erence between the topology of Berkovich and Huber. Indeed if U � tv} vpXq  

17



vpλqu then η r P U and if U was open in the Huber topology, it should contain ηr but this is not
the case.

2.8 cΓvpIq

I � pt1, . . . , tnq an ideal.

Lemme 2.2 (2.4) If vpIq X cΓ � H there exists a greatest convex subgroup H such that vpiq is
co�nal in H , @i P I. Furthermore vpIq � t0u and vpIq XH � H.

D : The existence of H is a consequence of 1. But in this particular case , we have vpiq   1@i P
I.Otherwise vpiq ¥ 1 and then P cΓ by de�nition of it. Let h � maxpvptjqqj�1..n � vpt1q say. If
h � 0 then vpIq � 0 and H � Γv. Otherwise, f i P I , i � °

aktk and vpiq ¤ pmaxpvpakqq.h
say vpiq ¤ vpaqh. So vpi2q ¤ vpa2qh2 � vpa2t1qvpt1q   vpt0q since a2ti0nI so vpa2t0q   1. So
vpiq is co�nal in   h ¡conv�  vpt1q ¡conv. Conversly, if @i P I , i is co�nal in H then vpt1q
is co�nal in H and H �  h ¡conv. So the greatest convex subgroup in which vpIq is co�nal is
H �  vpt1q ¡conv which then contains vpt1q P vpIq.� cΓvpIq is then the union of cΓv and this
subgroup H if vpIq X cΓv � H.

Lemme 2.3 (2.5) If Γv � cΓv (otherwise cΓvpIq � Γv). Then the following are equivalent

1. cΓvpIq � Γv

2. vpiq is co�nal in Γv for all i P I
3. vpiq is co�nal in Γv for a set of generators of I

D : 1 ñ 2 : since cΓv � Γv , we can't have vpIqX cΓv � H , and by de�nition vpIq is co�nal in Γv.
2 ñ 1 : then vpIq X cΓv � H. Otherwise if vpiq incΓv , g   cΓv, then there exists a n such that
vpiqn   g   cΓv which is absurd. Hence vpIq X cΓv � H and cΓvpIq � Γv.
2 ñ 3 is clear.
3 ñ 2 : The set J � ta P A | vpaq is co�nal in Γvu is an ideal. Indeed �rst vpJq   1 , and if
g P Γv , a, b P J , Dn such that vpanq   g and vpbnq   g then vppa � bq2nq   g. If x P A , then
if vpxqleq1, vpaxq ¤ vpaq and ax P J . Otherwise, vpxq ¥ 1, then vpxq P cΓv, vpaxq ¤ vpxq. Now
if 1 ¤ vpaxq we have vpaxq P cΓv and vpaq too, which is impossible since cΓv � Γv and vpxq is
co�nal. Hence vpaxq   1 for all x P A. Let then g P Γv. There exists n such that vpaqn   g then
vpaxqn�1 � vpanqvpaxn�1q   vpanq   g. So J is an ideal, and 3 ñ 2.�

Remarque 15 If I � A then vpIqXCΓv � H so cΓvpIq � cΓv , and then SpvpA,Aq � tv | cΓv �
Γvu.

3 Continuous valuation of f-adic rings

Remarque 16 Let A be a Tate ring, and v : AÑ Γ � Γv be a continuous valuation. Then cΓ � Γ.
Indeed take x a nilpotent unit. Then x is co�nal in Γ , and   x ¡conv� Γ. It is even true that the
subgroup generated by tvpaq ¥ 1u is Γ. So in that case there are only secondary specializations.

Theorem 1 (3.1) ContpAq � tv P SpvpA,A.A��q | vpA��q   1u.
D : If v is continuous. Then clearly vpA��q   1. Then, if cΓv � Γv OK. Otherwise let A P A��,
vpanq Ñ 0 so vpaq is co�nal in Γv and accoriding to 2.8, v P SpvpA,A.A��q, i.e. cΓvpA.A��q � Γv.
Conversly let v P SpvpA,A.A��q such that vpA��q   1. First let's show that @a P A��, vpaq is co�nal
in Γv. If Γv � cΓv then this is true by de�nition of SpvpA,A.A��q and cΓvpA.A��q. Otherwise
Γv � cΓv , hence if g P Γv Dt P A such that vptq ¥ vpgq�1 i.e. vpgq ¥ vptq�1 . Hence if A P A��, Dn
such that vpantq   1 ñ vpanq   g.
So let A0, I � pb1 . . . bnq be an adic ring of de�nition for A. Since the bi P A��, the vpbiq are co�nal
from what we've just seen, in particular vpbiq   1 , and we easily see that for ν � pk1, . . . knq with
|ν| ¥ N for a big enough N , vpbνq   g . Hence since vpIq   1 we have vpIN�1q   g which shows
v is continuous. �

Theorem 2 If A is a ring which is Tate, A.A��� A and hence ContpAq � tv P SpvpAq | cΓv � Γv
and vpA��q   1

18



3.1 counter-example continuous valuations

1. vpA�q ¤ 1 , vpA��q   1 : inspired by [2] �10 lemma 1 which says that if v : k Ñ Γ0 is a
valuation of the �eld k and g P Γ w : krXs Ñ Γ,

°
aiX

i ÞÑ maxpvpaiqgiq is a valuation.
Let v : A � ktXu Ñ Z � R ,

°
anX

n ÞÑ maxp�n, |an|q. This is a valuation, vpA��q   1 and
vpA�q ¤ 1 but it is not continuous : cΓv � 0 � Z. Or if π P k� vpπqn isn't aribtrary small
although πn Ñ 0. Here v P LpAqzContpAq.

2. A Tate ring and a v such that vpA��q   1, vpA�q ¤ 1 but not continuous. Take A �
ZprX,X�1s � A0 � ZprXs � I � A0.X. The X-adic toplogy on A0 extended to A makes it
a f -adic ring. Mainly because if P P A , fn Ñ 0 then Pfn Ñ 0 and if gn Ñ 0 , fngn Ñ 0.
Then A��� I ; A�� A0. Let v : A Ñ Z2 , vp° aiX

iq � maxp|ai|,�iq. Then vpIq   1 ,
vpA�q ¤ 1 but Xn Ñ 0 however vpXnq doesn't converges to 0 , i.e. vpXq isnot co�nal in Γv.
(Also because cΓv � 1� Z � Z2.)

3. A a f -adic ring , v : AÑ Γ0 such that vpA��q   1 but v not continuous.
Take A � ZprXs equiped with the pX, pq-adic toplogy, and v : A Ñ Z2 ,

°
aiX

i ÞÑ
maxp|ai|p,�iq. Then on easily checks that A��� pp,Xq and that vpA��q   1. But Xn Ñ 0
however vpXnq � p1,�nq doesn't converge to 0.

Proposition 3.1 (cf [5] 3) The integral closure of the subring Z�A��� tn� a | n P Z, a P A��u
, B is the smallest ring of integral elements of A.

D : First note that A��is open. Indeed if pA1, Iq , is an adic ring of de�nition of A , I � A��is open.
So Z � A��is a subring of A�(note that Z � A��is well a subring, because A��is stable by � and
� ).
Now let's show that A�is integrally closed in A.
First let's prove :

Lemme 3.1 If B is a bounded subring in A f-adic, and A P A�then Bras is bounded.
D : let pA0, Iq be a ring of de�nition. In a neighborhood. Dm such that takuIm � In, and p such
that BIp � Im. Then banIp � anIm � In. �. Hence since Z is also bounded, we see that if
a0, . . . an P A�, Zra0, . . . , ans is also bounded.
So let x P A be integral on A�, i.e. xn � a0 � a1x � . . . an�1x

n�1. Call B � Zra0 . . . an�1s. By
induction we got that xp P B�B.x� . . .�B.xn�1 @p. So if Im is a 0 neighborhood, we can �nd k
such that B.xlIk � Im for all l � 0..n� 1. Then xpIk � Im , @p. Hence x P A�. So A�is integrally
closed in A , so pZ�A��qclosure A � A�.
Conversly, if B � A�is open and integrally closed in A, let x P A��, so that xn Ñ 0 , hence there
exists a n such that xn P B since it is open, hence x P B since it is integrally closed. �

[3.6] supposes that ¯t0u is an ideal : let x P 0̄ , a P A V a 0-neigborhhod. We can assume
V � �V , then 0 P ax� V ô ax P V , but AÑ A, u ÞÑ au is continuous so D a neigborhood of 0 ,
W such that aW � V , and x PW because x�W is a neighborhood of x so 0 P x�W , i.e. x PW .
�

3.2 A�noid rings

Dé�nition 3.1 A subring of A is called a ring of integral elements if it is open , integraly closed,
and contained in A�.
An a�noid ring is a pair pA,A�q with A a f -adic ring and A� a subring of integral elements.
By a ring homomorphism of a�noid ring it is meant f such that fpA�q � B�.

Lemme 3.2 Let J be an ideal of A. J is open ô A��� ?
J

D : ñ Let a P A��, so that Dn such that an P J .
ð Let pA0, Iq be a ring of de�nition, I � pi1, . . . , inq. Since I � A��� ?

J , for each j � 1..n there

exists kj such that i
kj
j P J . Then k :� °

kj and I
k � J which is then open. �

This explains that if T.A is open, A��� ?
J so U � tv P SpvpA,A.A��q | vptiq ¤ vptq � 0u a

rationnal subset.
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Remarque 17 On rational domains. Let's restrict to the case A a ring Tate. Then for [5] a
rationnal subset of SpapAq is RpTs q � R � tv | vptiq ¤ vpsq � 0u with ptiq � A. Hence if
v P tv | vptiq ¤ vpsquR since

°
aiti � 1 if vpsq � 0 we have vptiq � 0 so vp1q � 0 which is

impossible, so R � tv | vptiq ¤ vpsqu.
Now let's consider S � tv | vptiq ¤ vpsq, i � 1..nu where pti, sq � A. If we had tn�1 � s we still
have S � tv | vptiq ¤ vpsq, i � 1..n � 1u which is rationnal in Huber's sense. So the two possible
de�nition of RpTs q , with pT q � A or pT, sq � A give the same class of subsets.

3.3 analytic points

There exists a �nite set T � A��such that T.A is open. Indeed let pB, Iq a ring of de�nition ,
with I � pb1, . . . bnq. Then T � tb1, . . . , bnu works.
Proposition 3.2 pSpapAqqa � tx | supppxq � v�1p0q is not open u
� tx | xptq � 0 for one t P T u
� YtPTRpTt q
D : if x P pSpapAqqa then supppxq is an ideal, not open, so T � supppxq so D | xptq � 0.
Conversly, if xptq � 0 , t P A��, xptnq � 0 but converges to 0 so supppxq is not open. �
Proposition 3.3 If v P SpapAq is analytic, then v is microbial.

D : We have A Ñ A{supppvq � B Ñ qfpBq � K and let R be the valuation ring of K associated
to v.

Let also A0, I be a ring of de�nition of A. First note that saying that v is analytic means that
supppvq is not open (it is closed, but we don't care), so I � supppvq and in fact neither In for any
n. Then the topology on R is I-adic (more precisely we should de�ne J � R.t̄i | i P Iu and say R
is J-adic. Indeed, �rst J is an ideal of R wich is not t0u (because I � supppvq) , so it is open. And
if g P Γv , we have a n such that vpInq   g. Then vpJnq   g which shows that the topology of R
is the J-adic topology. Since Jn � t0u for all n , the topology is not discrete. So accoridin to the
criterion 4 , v is microbial. �

3.4 constructible sets in the respective spaces

In SpvpAq, the constructible subsets are �nite boolean combination of subsets of the form
tv | vpaq ¤ vpbqu (prop 2.2 in [5]). This includes for instance the subsets tv | vpaq � vpbqu and
tv} vpaq � 0u.

For instance U � tv P SpvpAq | vpaq � 0u is quasi compact open (i.e. constructible and open, i.e.
proconstructible and open) , because indeed it is open, (� tv|vpaq ¤ vpaq � 0u and constructible.

In SpvpA, Iq the constructible subsets are the boolean combinations (�nite) of rational domains :
U � RpTs q � tv P SpvpA, Iq | vptq ¤ vpsq@t P T u where T is �nite and I � ?

T.A.
ContpAq � tv P SpvpA,A.A��q|vpA��q   1u is a proconstructible subset of SpvpA,A��.Aq.
�Let's consider ContpAq

c

��

b

''NNNNNNNNNNN

SpvpA,A��.Aq a // SpvpAq

Then a and b are not spectral in general.

Indeed otherwise b�1tvpaq ¤ vpbqu would be constructible, but it is hard to imagine how it could
be a boolean combination of rationnal subset , particularly when b � 0 in which case it is a
Zariski closed subset. More precisely if A is an a�noid algebra , f � 0 , π P k��zt0u , then
b�1pvpfq � 0q � Yn¥0tvpfq ¥ vpπnqu and you can't extract a �nite cover from the right hand
side, so it is not quasi compact. So b isn't spectral , and since b � c � a , and a is spectral, c isn't
spectral.
according to [5, 2.5 , 2.6] :
r : SpvpAq Ñ SpvpA, Iq
v ÞÑ v|cΓvpIq is spectral. Then take A � krts , I � A
�It is false to say that r�1tv P SpvpA,Aq | vpaq ¤ vpbqu � tv P SpvpAq | vpaq ¤ vpbqu.
For instance U � r�1tv | vpT q ¥ 1u. Let vT be the T�adic valuation. cΓvT � t1u so cΓvT � t0u
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and vT |t0u � w � the trivial valuation . Hence since wpT q ¥ 1 , vT P U � r�1tv | vpT q ¥ 1u but
vT R tv P SpvpAq | vpT q ¥ 1u so r�1tv | vpT q ¥ 1u � tv P SpvpAq | vpT q ¥ 1u.
This helps to understand the fact that :
r : SpvpAq Ñ SpvpA, Iq is spectral [5, 2.6(ii)] , and surjective, so T � SpvpA, Iq is constructible i�
r�1pT q is . So if it was true that r�1tv P SpvpA, Iq | vpaq ¤ vpbqu � tv P SpvpAq | vpaq ¤ vpbqu ,
the subsets tv P SpvpA, Iq | vpaq ¤ vpbqu would be constructible.

4 Tate rings of topologically �nite type over �elds

Proposition 4.1 Let A be a k-a�noid algebra, and v P SpapA,A�q. Then v|k is the initial valua-
tion of k.

Indeed, v is a valuation with vpxq ¥ 1 when x P A�Xk � k�. Conversly if x R A�Xk , then x�1 P A��
so vpx�1q   1 (cf 3.1 [5] ), i.e. vpxq ¡ 1. So vpxq ¤ vpyq i� |x| ¤ |y| so they are the same.
More conceptually pk, k�q Ñ pA,A�q is a continuous morphism of a�noid ring, so induces f :
SpapA,A�q Ñ Spapk, k�q. What we've shown is somehow the fact that Spapk, k�q � t||u where || is
the valuation on k, because in general (cf [6] 1.1.6) if A � pA�, A�q is an a�noid �els, SpapAq is
the set of valuation ring B, such that A� � B � pA�q�. In our case it gives k�� B � k�, so the
only possiblity is k�.�

If A is a Tate algebra, LA � tv P SpvpA | vpA�q ¤ 1 and vpA��q   1u. We note (abuse of
notation) SpapAq :� SpapA,A�q. Then

� ContpAq �
MaxpAq � SpapAq SpvpAq

� LA �
Proposition 4.2 ([8] the. 10.2) Let K be a �eld , A � K a subring p a prime ideal of A. Then
there exists a valuation ring R of K such that A � R and MR XA � p.

Corollaire 4.1 Let k be a valued �eld and K an extension of �eld, then there exists a valuation
on K that extends the one of k.

D : Let A be the valuation ring of pk, vq, p � mA. Then there exists R a valuation ring of K with
A � R and mRXA � mA . So let C � kXR. Then C � A (for instance because C is a k-valuation
ring that extends A, with the same maximal ideal, or because if x P CzA, vpxq ¡ 1 , x�1 P mA but
since mR � mA , x�1 P mR which contradicts x P R. �
Proposition 4.3 Let A be a ring, I � pajqjPJ an ideal. Then π : A Ñ A{I induces Spvpπq :
SpvpA{iq Ñ SpvpAq. Its iamge is tv | vpIq � 0u and it is a homeomorphism on its image. In
particular, if I is of �nite type, this image is a constructible subset.

Proposition 4.4 (cf [5] 4.1 or [7] Prop. 2.1.1) Let f : AÑ B a morphism of �nite presenta-
tion and U � SpvpBq a constructible subset. Then SpvpfqpUq is constructible .

D : f decomposes as A
f1ÝÑ ArX1, . . . Xns f2ÝÑ B � ArX1, . . . , Xns{I where I � pa1, . . . , anq is

�nitely generated. Let U be a boolean combination of tvpāq♦vpb̄qu with a, b P ArX1 . . . Xns, then
Spvpf2q is the same boolean combination of tvpaq♦vpbqu X tvpaiq � 0, i � 1 . . . nu.
So we can restrict to the case B � ArX1, . . . , Xns, U a boolean combination of tvpP q   vpQqu .
Since P P ArX1, . . . , Xns, D an interger m, p1, . . . pm P A and p P ZrY1, . . . , Ym, X1, . . . Xms such
that P � ppp1, . . . , pm, X1, Xnq, and also Q � qpq1, . . . , qM , X1, . . . , Xnq.
An element w P SpvpArXis represented by B

ψÝÑ k is in U i� the combination of formula pppi, tjq  
qpqk, tjq is true where tj � ψpXjq.
Hence A

φÝÑ k corresponds to a valuation v of A, it is in SpvpfqpUq i� there exists a diagram

B
ψ // L

A

f

OO

φ // k

ι

OO
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But when φ and ι are �xed, a ψ giving rise to a commutative diagram as this one is equivalent to
the data of l1, . . . ln P L.
Hence v P SpvpfqpUq i�
D an extension L of k and l1, . . . ln P L such that the formula P pl1, . . . , lnq   Qpl1, . . . , lnq is true i�
Dι : k Ñ L an extension with L algebraically closed valued �eld (using 4.1), and such that the
following formula holds

Dl1 . . . lnboolean combinationp|pppi, ljq|   |qpqk, ljqq

For such a L, if it is trivially valued, we can embed it in LpXq with the X-adic valuation so that
it isn't trivially valued anymore so that
ô Dι : k Ñ L an extension with L algebraically closed non-trivially valued �eld (using 4.1), and
such that the following formula holds

Dl1 . . . lnboolean combinationp|pppi, ljq|   |qpqk, ljqq

But using elimination of quanti�ers for the non-trivially valued �elds (warning you can't eliminate
Dx � y � 0|x| � |y|, which precisely de�nes the non trivially valued �elds), this formula is equivalent
to a universal (meaning independant of L ) formula ϕppi, qkq, which de�nes a constructible subset
of SpvpAq.�

Theorem 3 (4.1) LA is the closure of MaxpAq in the constructible topology of SpvpAq

D : First LpAq is well closed in this topology (cf Prop 2.2) wich says that a basis for the constructible
topology is the sets tv | vpaq � vpbqu , � P t ,¤u. �

Proposition 4.5 Let f : X Ñ Y a continous map beetwen toplogical spaces, A � Y .

1. ¯f�1pAq � f�1pĀq
2. if f is open ¯f�1pAq � f�1pĀq

D : 1f�1pĀq is closed and contains f�1pAq.
2 Let x P f�1pĀq and U a neigborhhod of x. We have to show that U X f�1pAq � H. But fpUq
is open, so neigborhhod of y � fpxq P Ā, so fpUq X A � H. So if z P fpUq X A, z � fpuq ,
u P f�1pAq X f�1pfpuqq � f�1pAq X U , ñ f�1pAq\ U � H. �

4.1 Prime �lters

˜MaxpAq denotes the set of prime �lters of MaxpAq , (precisely the prime �lters of the lattice
of �nite union of rationnal subsets (cf Dickmann).
Cor 4.5 : Let F be a prime �lter, de�ne F 1 � tMaxpAqzR | R R Fu and de�ne W � F Y F 1.

}Let W1, . . . ,Wn PW, then Xi�1..nWi � H

D : in this intersection there is in fact one rational domain R (because they are stable par X) , and
some Rci with Ri R F . Then if we had R � YiRi , R � YpRi XRq is an element of F so one of the
RXRi must also be in, so Ri also which is absurd. So R � YiRi, i.e. RXi Rci � H. �

}D :� XWPWW̃ � H. Let x P D, then spxq � F

D : spxq � F : if F P F , x P D so x P F̃ .
Conversly let Ũ XMaxpAq � U P spxq , i.e. x P Ũ . If we had U R F , then V �MaxpAqzF PW ,
and then x P Ṽ , so x R Ũ , absurd.�
4.7.2 : F P ˜MaxpAq, then :
1ta P A | @F P FDx P F | apxq � 0u
2� ta | @e P k�DF P F | |a|F ¤ |e|u
3� ta | @r ¡ 0 DF P F | |a|F ¤ ru � pF
2 =3 is clear.
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1 � 3 : if a P 1. Let F1 � tx P MaxpAq | |apxq| ¤ ru and F2 � tx P MaxpAq | |apxq| ¥ ru.
F1 Y F2 � MaxpAq so one of it is in F . F2 R F because a P 1 , and @x P F2 apxq � 0. So F1 P F ,
and a P 3.
If a P 3. Let F P F such that apxq � 0@x P F . Then Dr ¡ such that |apxq| ¥ 2r @x P F . But since
a P 3 DG P F such that |a|G ¤ r. Then F X G P F , but is empty. Contradiction, so Dx P F such
that apxq � 0.
Remark : with 3 , we see that pF is prime ideal. Indeed if a, b P 3 and r ¡ 0, DFa, Fb such that
|a|Fa

¤ r|... Then |a � b|FaXFb
¤ r. If c P A, |ac|Fa

¤ }c}|a|Fa
¤ }c}r. And if a, b P A and ab P 3.

Let r ¡ 0 , F such that |ab|f ¤ r2, Fa � tx | |apxq| ¤ ru, Fb � tx | |bpxq| ¤ ru . Then FaYFb � F ,
so one of them is in F .
Rk : we prooved that pcF � ta | DF P F , r ¡ 0 |@x P F |apxq| ¥ ru.
spη1q � tR | R contains all but �nitely many open balls of radius 1u.
� spη 1q � tR | R � pB̊p0, 1q minus some balls od radius  1u .
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