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Préliminaires

0.1 Valuation ring

Définition 0.1 ¢f [8, p.71] An integer ring R is a valuation ring if, noting K for its field of
fraction, Vxe K ,z€ R orxz~ ' € R.

cf aussi [1, p122]

Proposition 0.1 If R is a valuation ring, R is a local ring. The ideals of R are totally ordered by
inclusion.

D : R is local iff the non-invertible elements are stable by addition. If  and y are not invertible,
if x or y is 0, then OK, otherwise, % say isin R.Then z +y =y + y% =y(l+ %), and since y isn’t
invertible, x + y neither.

Let I and J be two ideals of R. Suppose I & J and J & I . let then ¢ € I\J and j € J\I. By
symetry, suppose that % € R. Then i = j% € J, which is absurd. o



Actually, this also proves that R is a local ring : define m as the union of all the proper ideals of
R. It is a proper ideal beceause they are totally orderd by inclusion, and maximal.

Proposition 0.2 Let K be a field, v: K — I'g such that

v(x) =0iffr =0

v(zy) = v(z)v(y).

Then v is a valuation iff Vx such that v(z) <1, v(1l +z) < 1.

D:= v(l+2a) <max(v(l),v(z)) =1.
< :let x and y € K not zero (otherwise it is easy). Suppose v(z) > v(y). Hence v(%) < 1. Then
v(z+y) =v(@)v(l +£) <v(z). o

Définition 0.2 A valuation on A is v : A — Ty such that v(ab) = v(a)v(b) and
1. [2, VI, §3] or [8, p. 75] , v(z + y) = min(v(z),v(y)) and the law on T is that 0 is oo , i.e.
greatest element (we should note in fact T,
2. [3] v(z +y) < max(v(z),v(y)), and 0 is the lowest element.
Putting w:= 1, i.e. w(a) =v(a)"! ifv(a) #0 , and w(a) =0 if v(a) = 0 (in fact 0 & ®) , gives
a bijection between valuation of hte types (i) and (ii). We will always take definition (ii).

0.2 product of valuation

If v; : A — Gamma, are two valuations (i = 1,2), then
v:A— Ty x Ty (with the lexicographic order) is not a valuation in general. Indeed if one can find
a and b such that vy (a) < v1(b) and vy(b) < va(a) , then we would have v(a +b) = (v1(b), v2(a)) >
max(v(a), v(8)) = v(b) = (v1(b), va(b)).
Exemples :
* A =7 ,vothe2—adic valuation, and vz the 3-adic one, then v(2+3) = (0,0),v(2) = (—1,0),v(3) =
(0,—1).

*A = k{T} U1 = 1B(0,1) and Vg = 773(0,%-
Then o(T? +p) = (1, 1) , o(T?) = (1, %) , v(p) = (1, 1).
0.3 Completion of a topological ring

Let A be a topological ring. A sequence in A is said to be a Cauchy sequence if for every
0-neighborhood V' there exists N such that n,m > N implies x,, — z,, € V.
If z,, — [, then z,, is Cauchy. Indeed let V' be the 0 neighorhood, then there exists a 0-neigborhood
W such that W — W < V. Then for n big enough z,, e [+ W ,and z,, —x,, e W =W S V.

Acauchy is a group for +. If x,, and y,, are Cauchy, let V' be a 0-neigborhood. Let W be another
one such that W + W < V. Then for n big enough, z,, — x,, € W and the same thing for y,
sothat (x +y)p — (z+yY)m e W+W V.

x, Cauchy = x,, bounded. Let V be a 0-neighborhood, and W st W + W C V (in particular
W c V). Let X1, X5 two neigborhoods s t X;. Xo CSW.3INstn > N = (z, —zn) € X1.
fori=0..N—13W; st z,W; CW.

Define Z =Wyn...nWyn Xs. Thenfori=0..N—-1 s, Z oW, CcWcCV.
Fori> N, x2S (v;—x,)Z +(zn)ZS X1 Xo +ayWy W+ W C V.
x, and y,, Cauchy = (zy), are Cauchy Let V. IW st W+ W C V.
IX.andXy, s t ,. X, and y,. X, e W.
X =X, nX,.
Then for n,m » 0 y,, —y, and x,,, — z, € X then ©,,ym — Tryn e W + W C V.
the 0 sequence form an ideal of Acquchy Let x5, be a 0 sequence, and y,, a Cauchy one, so that
it is bounded.
Let V. As y, is bounded there exists W such that y,.W < V. then for n » 0 x,, € W , and
(xy)n € V.
— Define hatA = Acquchy/z€r0 — seq.



0.4 Ordered groups

I" is an abelian ordered group.

Proposition 0.3 a > b iffa ! > b1,

D:a>=b=ala'b7!) = blab1),ie b! > a~ . Applying this with a=! and b~! gives the
other inequality. o.

Définition 0.3 A subset X of T" is convex if V z,y,z€ T withx <y < z and x,z € X thenye X.

The convex sets are stable by intersection ; if X; are convex sets that all contain 1, then uX; is
convex. If X is convex, X ! = {27! | z € X} is convex .

Définition 0.4 If AcC T, define Acony = {x €' | Ja,b € Awitha < x < b}. This is the smallest
convex set that contains A.

Proposition 0.4 If H € T is a subgroup , Heony s a subgroup.

Indeedif a <2 <b,and ¢’ <z’ <V thenaa’ <z’ <bY ,anda ' =271 >b"1 o

Proposition 0.5 If X C T is a convex subset that contains 1 , then < X > (the subgroup generated
by X ) is convex.

D : Let’s show that X.X is convex : let a,b,¢,d € X and ab < z < cd. Put {a,b,¢,d} = {«, 8,7, 0}
,sta<B,7,0. Then af < ab < x < ed < 79, so that we can assume that a < b < ¢ < d. Then
ab < cb < cd.

Ifab<z <ch,a<zb!<c,and zb~! € X since it is convex, so sincebe X , z = zb '.be X.X.
Otherwise cb <z <ecdand b<zc ' <dand z = 2° Lce X.X.

Define X’ = X n X! which is convex since 1 € X and X~ !, then < X >= n,-0X"" is then
convex. o

The hypothesis 1 € X is necessary as shows the exemple X = {2} € (Z, +, <) , where < 2 >= 27
is not convex.

Corollaire 0.1 If X €T < (X U {1})cone >=< X >conw

Indeed < (X U {1})eony >2< X > and is convex 80 < (X U {1})conw >2< X >conv- And
< X >conpy2 X U {1} and is a group , 0 < X >:0np2< (X U {1})conw > D

Define Conv(TI") as the set of convex subgroups of I'. Then it is totally orderd for inclusion. It
has the lower and upper bound properties (take n and ).
Call a convex subgroup < g >cone a principal subgroup. Note that a convex subgroup isn’t neces-
seraly principal.
For instance take I' = (Z, +, <)@, that is the sequences indexed by Q almost everywhere zero, and
ordered by the lexicographic order. Then H g5 = {z € T'|supp(x) <] — o0, +/2]} is a convex subgroup
, which is not principal, since any principal subgroup is of the form H, = {z € I'|supp(x) S]—0, a]}
for a € Q.
In fact for any be R , H® = {x € T'|supp(z) <] — o0, b[} is also a non principal subgroup.

Définition 0.5 Let H € T' a subgroup, then v € I" is cofinal in H if Vhe H,ane N s t v < h.
Proposition 0.6 g is cofinal in H iff < g >conv=2 H and g < 1.

= :Since Inst 1> g™, wehave 1 > g. let h € H. If necessary, let’s take h™!, so that h < 1. Then
there existsan>0st1>h>=g", = he< g >cono-

< :let h € H , here again, taking h~! if necessary, we can assume that 1 > h. Then there exists a
neNstg" <h<1,andthen ¢""' <h,so g is cofinal in H. o.



Proposition 0.7 Let (H;) be a increasing family of subgroups s t g is cofinal in each H;. Then g
is cofinal in H = UH;.

D :if he H then h e H; for one i and then g being cofinal for H; Inst g" <h .o

Corollaire 0.2 Let g < 1. Then there exists a bigger convex subgroup H of I' s t g is cofinal in
H. In fact H =< g >cony

D : The family F of convex subgroups G for which g is cofinal is non empty {1} works, then
H = ugerG is a convex subgroup, and ¢ is cofinal for H according to the previous proposition.
Clearly it is maximal for this property.

Now, g is cofinal in < g >;ope, indeed z €< g >,on, implies there exists n = 0 such that ¢" < = so
g™t <z and s0o H 2< g >cony. Now if h € H, takin h~! if necessary we can assume h < 1. Then
In>0stg"<h<land he<g>cony. 0

Remarque 1 Let X €Ty ={geT | g <1}. Define

Conv(X) = {H convex subgroup such that Yz € X, x is cofinal in H}. Since it stable by 2 , and
nonempty ({1} € Conv(X) ) we can (taking its lower bound, i.e. intersection) see it has a subgroup :
the smallest such that... Then from what we have done, Conv(X) = Ngex < T >conw-

1 F-adic rings
Proposition 1.1 A”C A~

D : Let a € A", and V a 0 neigborhood. There exists W a 0 neigborhood such that W.W < V.
There exists N such that n > N implies a” € W. For each i« = 0... N — 1 there exsists W; a 0
neigborhood s t a’W; € V. Then if U = Wy n ... n Wy_1 n W then for each i a'U C V. o

An adic ring is bounded . Indeed, if I is an ideal of definition of A , then if V' is a 0 neigborhood,
there existsanst I" €V and I"A=1"C V.
For S and T two susbsets of A, le S.T be subgroup of (A, +) generated by the elements st , s € S
and teT.

Définition 1.1 1. A topological ring A is f-adic if there exists a subset U and a finite subset of
U, T such that {U"|| n € N} is a fundamental system of 0 neigborhood, and T.U = U% c U.

2. A is called a Tate ring if it is f-adic and has a topologically nilpotent unit.

A ring of definition of a f-adic ring is an open subring Ay of A which is adic.

Proposition 1.2 (Prop 1) Let A ba a f-adic ring. Then
1. A has a ring of definition.
2. A subring Ay is a ring of definition iff it is open and bounded.
3. Ewvery ring of definition of A has a finitely generated ideal of definition.

It is then clear that a topological ring A is f-adic iff it has a an open subring Ay, which is adic for
a finitely generated ideal I (since in this case A is clearly f-adic).

D : Let W be the subgroup of A generated by U. Since U? € U, we can conclude that W2 C W.
Let B =Z+W. Then B is a subgroup of A for its additive law. It is also stable by multiplication :
(n4+w).(m+w') = nm +mw +nw +ww € B(W? < W). B is then a subring. It is open since it
contains U which is an 0 neigborhood , and a subgroup of a topological group is open iff it contains
a 0 neigborhood. For n > 2, B.U" = U", because Z.U™ = U™ , and W.U"™ = U"*! , and the fact
that U2 € U implies that U"*! € U". Hence the U™ being a fundamental system of neighorhoods
of 0 implies that B is open.

Hence we can introduce Ay an open and bounded subring of A.

For n € N define the finite set T'(n) = {t;.t2,...t, | t; € T}. Since T € U and T.U = U?,



T(n) € U™. In particular since the U" form a fundamental system of neighorhood and A is open,
3k st T(k) € Ag. Put then I = t(k).Ap. Let’s show that I"™ (seen here as an ideal of Ag) is a
fundamental system of neighorood of 0 (in A, or Ay, it is equivalent since Ag is open).

First, there exists a m s t U™ € Ay, and then for n € N, one easily sees that I"™ = T'(nk)A4y 2
T(nk)U™ = U™ +™ g0 I" is a 0 neighorhhod.

Let V be a 0 neigborhood. Then there exists m s t U'Ay € V because A is bounded. But now
I™ = T(mk)Ag € U™ Ay € U™Ay € V. Hence Ay is a ring of definition for I, and I is of finite
type, which proves (i) and (ii).

Now if Ag is a ring of definition of A, as noted previously , A is bounded (in Ay, so in A too) ,
since it is adic. So by what we have done, it has a finitely generated ideal of definition.o

Now then, for A a f-adic ring , we will consider it coming with a couple (Ao, I) , with Ag a ring
of definition and I an ideal of definition. Then the I form a fundamental system of neigborhood
of 0.

Lemme 1.1 Let A be a f-adic ring, S and T bounded subsets. Then S.T is bounded.

D : let (Ap,I) a ring of definition, and I™ a 0 neigborhood. Im s t SI™ c I"™. Ip st TIP < I™.
Then, if s,t € S xT ,and a€ I? | ta € I so sta € I"™ . Since I" is a subgroup, one then conclude
that (S.T)IP € I™. o

Corollaire 1.1 Let A be a f-adic ring.
1. If Ay and Ay are rings of definition, then Ag.A1 and Ag U Ay also.

2. If B is a bounded subring, and C an open subring with B € C subseteqA , there exists Ay a
ring of definition with B € Ay € C

3. A’ is a subring , and it is the union of all rings of definition.

D:

(i) the second point of the previous proposition shows that Ay and A; are open and bounded. Then
Ap U A, is also open, and bounded . Then Ag.A; is also open (it contains Ap) , and bounded accor-
ding to the lemma. So the second point of the proposition shows that there are ring of definition.
(ii) Let Ay be a ring of definition. Then B.A; is a subring, bounded (previous lemma) , and open
(contains Agp) , so is a ring of definition. Then Ay = A; u C is an open bounded subring so is a
ring of definition, and B € Ay € C.

(iii) Let (A, I) be a ring of definition for A. First 0 and 1 € A"

Let now a,b € A", and I"™ be a 0 neigborhood. There exists m s t {a*,k € N}J™ < I" and
{b¥}I™ < I". Then for 7,5 € N, a"b*I*™ = a"(b°I™)I™ C a"I"*™ C o"I™ < I". Since
(a +b)F = 3 (¥)a't" !, one has (a + b)*I*™ < I", and (ab)*I*™ < I™, ie. a + b and ab € A".
So A’ is a subring.

Now if X is bounded, then X € A" | in particular for any Ag ring of definition, 49 € A°. On
the other hand, Z is bounded (this is a consequence of the fact that some ring of definition exist,
that they are bounded and contain Z, more simply because ZI™ < I™). Let now x € A". Then by
definition {z™} is bounded, so B = Z.{z"} = Z[z] is a bounded subring. B € A which is open
(1), so with (ii) there exists a ring of definition Ay with B € Ag, and then z € Ag So A" = U 4,4p.0

Proposition 1.3 If A is f-adic A” is a subring (except it doen’t contain 1)

same proof

Corollaire 1.2 1. An adic ring is f adic iff it has a finitely generated ideal of definition.
2. A f adic ring is adic iff it is bounded
3. Let A be a topological ring and B an open subring. Then A is f adic iff B is.



D:

(i) = is a consequence of (ii) of the prop.
< : already seen.
(ii) Let A be f-adic. If A is adic it is bounded (this is true without the assumption f-adic). Conversly
, if A is bounded, then (ii) of the proposition , since A is bounded and open in A f-adic, it is a ring
of definition, hence is adic.
(iii) If B is f-adic, one can find (B, I) ring of definition for B, and since B is open , (By, I) is also
a ring of definition for A hence A is f adic. Conversly, if A is f-adic, and B an open subring. Then 7Z
is a bounded subring, and Z € B which is open. Then accordingly to (ii) of the previous corollary,
there exists a ring of definition (Ag, I) for A such that Ag € B. This makes B a f-adic ring.

Remarque 2 Let A a topological ring.
* A° is not necesseraly a subring. For instance, A = R, ||, then A°= [—1,1] is not a subring.
*A° isn’t necesseraly open, take R again, where [—1,1] isn’t open. From what we’ve seen, these rwo

properties are true for f-adic ring.
*A° isn’t bounded.

exemple 1 Take C non reduced, and then a non zero s t a™ = 0. Put B = C[X] , and A = Bx =
C[X, X~'] with the induced structure of a Tate ring (cf exemple 1.1 (iv) of [3]) then & € A”
for all m, because )" = 0, but if there existed a p s t A°.(XP) € B = C[X] , we would
have 35+ XP = ¢ € B which is absurd.
But here A is not reduced.

ezemple 2 Put B = k[X;, X];0/(X? = X) , and A = Bx with the induced Tate structure. Put a, =

X1X7nX2 Then a? =1, so a™ depends only on the parity of m , and a,, € A°. So for every
m , we have ay, 1 X™ = % ¢ B.

But here B isn’t noetherian, nor integral (X; — X2)(X1 + X2) = 0.

exemple 3 case with B noetherian and integral ?

Proposition 1.4 Let A be a height 1 valuation ring. Then k = qf(A), with the topology induced
by A is a Tate ring.

D : A = k" is an open subring, and A is adic with a finitely generated ideal of definition. Indeed,
let € K~ and x # 0, i.e. such that z € My, i.e. 0 < v(r) < 1. Put I = (x) = A.x. Then I is an
ideal of definition of A. Moreover, x is a nilpotent unit of k.

Définition 1.2 A ring homomorphism f : A — B beetwen f-adic rings is called adic if there exist
(Ao, I) and (By, J) rings of definition such that f(Ay) € Bo and f(I).By = J.

Lemme 1.2 (1.8(i)) If f : A — B is an adic ring homomorphism and T < A is bounded, so is
F(T).

D :let m , and so J™ = By(f(I)™) a 0 neighborhood. Then Jp such that T.I? € I™ = f(T)J? <
J™M. o

Remarque 3 If f : A — B is a ring homomorphism, then f(A™) € f(B*) , and if f is adic, then
from the lemma, f(A°) © B” : because if {a"} is bounded, so is f{a"} = {f(a)"}.

1.1 Microbial valuation

Proposition 1.5 Let (K,v) be a valued field. Then the topologies of (K, +) having U, = {z €
K |v(z) <g}, and Vy = {x € K | v(z) < g} as fundamental system of neighborhood of 0 make K
a topological field and are the same.

Définition 1.3 Call the height of T the number of convex (called isolated in [Z] ) subgroups of T
(possibly ).

If A is a valuation ring, call the height of A, the height of its value group.

[2, prop 5 §4] , the height of A is the number of non-zero prime ideals of A, i.e. its Krull dimension



Proposition 1.6 (prop 8 §4 [2]) T is of height 1 iff T is a subgroup of (R, +,<).

Définition 1.4 [6, p. 39] a non archimedian field is a toplogical field whose topology is defined by
a rank 1 valuation.

Proposition 1.7 Let K be a field, v , V' 2 valuations that are not unproper (unproper = trivial).
According to [2, prop 3 §7] they define the same topology on K iff they are dependant, i.e. the ring
generated by A, and A, is not K.

Let A be microbial, v the valuation it induces on A and K = ¢f(A), then there exists , w
another valuation, which is of height one such that they define the same topology. Let B the
subring of K generated by A = A, and A,,. Then we have seen that B # K and so [2], prop 1 §4]
B is a valuation ring of K, let’s call u its valuation. Then A,, € B # K, and [2, prop 4 §4] the
subrings containing A, correspond bijectively with the convex subgroups of T, € (R, +). In that
cas the only convex subgroups of I';, are {0} and T itself, corresponding to the subrings A,, and
K.So B=A, and A, € A, i.e. we have proved that if A and B are dependant valuation ring and
B is of hight 1, then A € B.

If A is a valuation ring, T its value group , K = ¢f(A) there are correspondances :

{p prime ideals of A} <\, {B|Ac BC K, B subring} < » {H CT,convex subgroup}
p = Ap
mpNnA=mp < B
B, 9\ T4 > Tg —  Hp = Ker(\)
stvg =Aovy
Vg = AgOU4g — H
where Ay : T —> T/H

These correspondances are [2, 3,§3 and 1 §4].

Hence A is of height 1 iff A is maximal for the subrings of K such that A ¢ B < K iff I'4 doesn’t
have any convex subgroups except {0} and I' 4 iff A is of Krull dimensio 1, i.e. its only prime ideals
are {0} and my4.

Proposition 1.8 Let I' be an orderd group. Then it has a convex subgroup G # I' maximal iff
dz € T such that < x >conu=1T".

D: = Let G & T with G convex and maximal. Let = € I'\G. The convex subgroups being totally
orederd , and since z ¢ G, G E< T >cony SO < T >conp= 1 because of the maximality of G.

< Let G = Ungr convex- Since convex subgroups are stable by union (for instance because they
are totally orderd), G is convex. Since ¢ H YH in the union, z ¢ G hence G & T, and is maximal
for this property. o

Hence a valuation ring A is microbial
< JA € B ¢ K with B of height 1
< JA € B ¢ K with B maximal
< A contains a prime ideal p # 0 minimal
< T contains a convex subgroup maximal # I" .
< Jdgel such that I' =< & >.on0.

Définition 1.5 [6, p. 40] A valuation ring A is microbial if it satisfies one of the following equi-
valent property :

1. qf(A) ( with the toplogy induced by A) is a non archimedian field.

2. qf(A) is a Tate ring.

3. qf(A) has a topologically nilpotnet unit.

4. A is non-discrete and adic

5. A has a prime ideal of height 1.



D : 1 = 2 is proposition
2 = 3 is in the definition of being a Tate ring.
3 =1 :let x be a nilpotent unit. Then 2™ — 0 , and it is esay to see that < x >, on,= I and we
are done with the preceding remark.
1 = 4 : Since A is of height 1, it is not discrete ({0} is not open) , and if B is a valuation ring
of height 1 of ¢f(A) that induces the same toplogy that A we can pick z € mp small enough such
that x € A (since A is a neigborhhod of 0) , and then we see that if [ = A.z, then A is I-adic.
4= 1:if Aisn’t discrete and adic. Let ¢ € I\{0} (this is possible precisely because A is not discrete
so I # {0}. Then Vg € T, there exists a n such that I € {a € A | v(a) < g} hence v(i)" < g and
using the fact that v(A) < 1 we have that < i > o, =T
1 & 5 was in the previous remark. o
example : Let K = k(z,y), and vy : K — Z2,
P = Za(n,m)xnym = _min((n’m) | A(n,m) 7 0}
It is a valuation ([2, §3 , ex. 6] , with the general cas v : k[I'*] - ', > aga? — —min(g | a; # 0 ).
Let

vy k(x,y) - Z

D an,mx"y™ = —min{n | Imsuch that ag, ) # 0}

Let 7: 7% —» Z, (n,m) — n. Then vo = 7 o vy.Let’s call 7; the toplogies generated by v;.

|71 = Ta.

Let Vipm) = {f € K | vi(f) < (n,m)} and U, = {f | v2(f) < p}.

Then Y(n,m), Uy—1 S Vipm) so Ty S T2. Conversly , ¥(n,m), Viy my S Uy s0 T2 € T1.0

In fact since vy = Towy, Ay, S A,, and they are proper valuation, so cf prop [L7], they define the
same toplogy. In this exemple , A,, is not a valuation of height 1, but it is microbial.

a valuation not micorbial
Let T' = ZM (the sequences in Z with finite support), with the (reverse) lexicographic order, i.e.
x = (xgy...2p,0...) with supp(z) € {0...n} , and the same thing for y , if z,, > y,, then z > y.
More generally , if z; = y; for i > n and z,, > y, = > y. We can then define

v k(zi)iey — ZM by v(Ya,x¥) = —min(v | a, # 0). Tt is easy to see that the convex subgroups
of T = ZM are the I',, = {z | supp(z) S {0...n}} =< & >.ony for any z of the form z =
(zo,...,2n,0,0...) with x,, # 0, and hence there doesn’t exist a proper maximal convex subgroup.

Hence A, is not micorbial. (we could also have seen, that for any = , < z >.one# I)

Remarque 4 We can extend the definition of being microbial to fields (this is actually nothing
since a field is a valuation ring) , and to valued ring v : A — Gamma, by saying that if B =
A/supp(v) and K = qf(B) , K is microbial. All the preceding properties work as well.

Here is an exemple with
A *v> FO
o,
B —"> H,
with v ~ w o ¢ , w microbial but v not microbial.
Inded take v not microbial on A = k a field. Then put B = k[z] , H = Z x I' and w(}a; X?) =

max((—i,v(a;)) | a; # 0). It is a microbial valuation on B for instance < (1,0) >¢ony=H ,0or 0 x T’
is a maximal proper convex subgroup).

2 Valuation Spectrum

2.1 compacity, filters

cf3, §6,7,9]
Let X be a topological space, F a filter on X |, x € X, B(z) the filter of neigborhhod of x. We say
that G is finer than Fif G © F



Définition 2.1 z is a limit point of F if it is finer than B(x), i.e. every neigborhhod contains an
element of F.

B is said to be a base of filter if it is stable by finite intersection, and doesn’t contains (.
Définition 2.2 Let B be a base of fliter, x is adherent to B if for every B € B, x € B.

If F is finer than G and x adherent to F , then it is also adherent to G.

Proposition 2.1 (§6 , cor 2) Let ® = {F)} a set of filter. There exists a filter finer that all the
Fiiff forall Fi... Foe® and F; € F; , Fin...nF, # .

So x is adherent to F
s VFeFandUeB(z), FnU # .
< J a filter G finer than F and B(z). Indeed consider for U € B(x) the filter Fy = {V| U €V},
and apply the proposition with ® = {Fy | U € B(X)} u {F}.
< 7 a filter G finer thant F which converges to z.

Corollaire 2.1 Let U be a ultrafilter. U converges to x iff x is adherent to it.

Définition 2.3 (Prop) X is quasi compact if it satisfies one of the following properties :
1. every filter has an adherent point
2. every ultrafilter is convergent

3. Ewvery family of closed set whose intersection is empty has a finite subfamily whose intersection
15 empty.

4. Every open cover has a finite subcover.

D : (i) = (ii) Let U be a ultrafilter, it has an adherent point, and so converges to it.

(ii) = (i) : let F be a filter, U a ultrafilter which is finer, it converges to z say , so = is adhrent to
U and also to F.

(i) = (iii) Let {F;} be a family of closed subsets whose intersection is empty. Let’s suppose that
every finite intersection is non empty. Then there exists a filter F that contains all the F;. Let x
be an adherent point, so = € F; = F; for all 4, which contradicts n;F; = &.

(iii)= (i) Let F be a filter , and suppose it has no adherent point. Then Vz € X,3F, € F with
x ¢ F,, and since F, € F , F, too. So the F, have the finite intersection property , however by
construction, their intersection is empty, which contradicts (iii).

(iii) and (iv) are dual. o

2.2 remark on compacity

A (open) basis of X is a family B (of open subsets necesseraly from the following definition)
, such that the open of X are the (arbitrary) union of elements of . Dually, it will be called a
closed basis, if the closed sets are the intersection of elements of B.
A (open) sub-basis of X is a family C (of open subsets necesseraly from the following definition) ,
such that the open of X are the (arbitrary) union of finite intersection of elements of C. Dually, it
will be called a closed sub-basis, if the closed sets are the intersection of finite union of elements of
C. The family B of finite intersection of C is then clearly a basis, called the basis generated by C.
Let C be a subbasis, and B the basis it generates. Taking the complementary, we give the same
name to the (sub)-basis of closed or open sets by taking the complementary
Then the following are equivalent :
X is quasi compact
< Every open cover has a finite subcover
< Every open cover by elements of 5 has a finite subcover.
< Every family of closed set of B whose intersection is empty has a finite subfamily whose inter-
section is empty.



Proposition 2.2 The following are equivalent :

1. Every family of closed set of B whose intersection is empty has a finite subfamily whose
intersection is empty.

2. Every family of closed set of C whose intersection is empty has a finite subfamily whose
intersection is empty.

D : clearly since C € B (i) = (ii).

Let’s suppose (ii), and let F = {F;} be a family of closed subsets of B with the finite intersection
property. Let’s show that n, F; # .

Let A be a maximal family of closed subsets of B such that A 2 {F;} and has the finite intersection
property. (such an A exists with Zorn’s Lemma). So npeaF' S n;F; so it is enough to show that
NreaF # . We now suppose {F;} maximal. It is eqsy to see that it implies that the family is
stable by finite intersection. Every F; can be written : F; = F,L-1 U ... F (should write n; instead
of n...) Let’s show that for every i there exists a j with FZJ eF

Let je{1...n}. f VG € F G F/ # & then the family F U {F/} still has the finite intersection
property and we are done. Otherwise, for all j there exists a G; € F such that G; n Fj = . Then
G=n;GjeF ,butVj,Gn FZJ = @ so G n F =, which is a contradiction (with the FIP).
So Vi , there exists a j; such that Ff € F. Then mFlJ C n;F; and since by construction ff eC
(ii) implies that m—Fiji # 5, s0 N Fy # .

Here is another proof : let’s show that X is quasi compact, i.e. satisfies the property, every
ultrafilter converges to some x. Indeeed le tif be a ultrafilter and let’s suppose it doesn’t converge
to any z. Then for every = we can find F € U such that 2 ¢ F. Then there exists F] ... F),, some
closed of Csuch that G = Fiu...0F, 2 F ,andz ¢ Fy u...F, = G. Then G € U so there exists
one i such that F; = F,, € U since it is an ultrafilter. But the F, € C , they have the FIP, but have
empty intersection since Vx,x ¢ F,.

[m]

We can then deduce that :

Proposition 2.3 X is quasi compact

< FEvery family of closed set of C whose intersection is empty has a finite subfamily whose inter-
section is empty.

< Fvery open cover by elements of C has a finite subcover.

2.3 constructible sets
of EGA, §9.

Définition 2.4 Z € X is retrocompcat iff VU qc open, Z nU is gc (note that it is equivalent that
Z nU is qcin Z orin U since this only depend on the topology of Z nU), i.e. ifi: Z S X —> X
1§ quasi-compact.

Définition 2.5 S € X is constructible if it is in the boolean algebra (N, u,¢) generated by the open
retrocompcat.

Proposition 2.4 Let V € X retrocompeat and U open in X , then V n U is retrocompact in U.

D:let W< U aqcopen. Then (VAU)nW =V nW. Since W is qc in X, and V retrocompact,
VnnWisqcin X ,soalsoin U. o

cf rq aprés 9.1.1 :

Remarque 5 1. if V1 and Vs are retrocompact, Vi u Va too.
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2. If V1, V5 are retrocompact open, then Vi n Vs too.

Indeed ; (i), if U € X is open qc, Vi nU, and Vo n'U are qc. Quasi compact sets are stable by
finite union so, (V1 U Vo) n U is qc.
(ii) If U € X is qc open , V1 n U is qc open, so Vo nn (V1 nU) too.

This is probably the reason why in EGA , the retrocompact sets are introduced,
because, the retrocompact open are stable by intersection, wheras qc not necesseraly
(unless you make the assumption X is quasi-separated...which is tautological).

If X is Haussdorf, U is qc open, iff U is compact open iff U is compact open-closed.

Proposition 2.5 (EGAO0 9.1.8) IfU € X is open.
1. If T is constructible in X, T n U is constructible in U

2. If U is in addition retrocompact, the converse is true : if T € U is constructible in U, it is
also constructible in X.

Définition 2.6 T < X is locally constructible, if for every x € X there exists V an open neighbo-
rhood of x such that T NV is constructible in X.

Définition 2.7 (EGA4 1.9) E € X is pro-constructible (resp. ind-constructible) if for every
x € X there exsists V a neigborhood of x such that V n E is an intersection of locally constructible
sets (resp union).

Remarque 6 (cf EGAO 9.1.11) IfU € X is open, and T locally constructible in X, then U T
18 locally constructible in U.

(EGA0 9.1.10) If X is quasi compact, and has a basis of open retrocompact, then T is constructible
iff it is locally constructible.

(EGA4 1.9.4) Under these hypothesis, T < X is pro-constructible iff it is an intersection of
constructible : indeed then we can cover X by some finite retrocompact open (since retrocom-
pact open = qc) , X;, say T = u;T n X;, and T n X; = ujT; 1s constructible in X |, then
T=v; Njey, Tj? = O (1seiin)eTy X Tn Vi=l..m Tj2 is an intersection of constructible sets.

2.4 spectral spaces

Définition 2.8 X is quasi-separated if for every qc open U and V , U n'V. is qc
Said differnetly, X is quasi-separated iff the qc open are retrocompact.

Moreover, if X is quasi-compact quasi-separated, the qc open are precisely the retrocompact open.
To give a counter-exemple, let X = Spec(k[T;]iz0), and U = X\{(T});}. Define Y as two copies of
X (say X; and Xs , glued along U. Then like X, X; are qc, but X; n Xo = U isnot qc.

Remarque 7 Let X be a topological space such that there exists a basis for the topology B = {U}
which are qc, and stable by finite intersection. Then, if V.W are qc open of X , V. n W is also qc.
Indeed write V = u,;=1.,V; with V; € B. (this is possible because V is qc and B a basis. Do the
same for W, then V.n W = u; ;V; n W; is then a finite union of gc sets, so is gc. Hence X is
quasi-spearated.

If X is a separated scheme, it verifies these hypothesises, so the intersection of two quasi compact
1S quasicompact.

Définition 2.9 [/, 0] X is spectral if it is Ty , quasi-compact , the qc open form a basis and are
stable by finite intersection, and every non empty closed irreducible subset has a generic point.

Remarque 8 In [5, 2] the definition is with a unique generic point, but without Ty. This is equi-
valent : suppose that X is Ty if Tt =y x # vy, let U be an open st x e U,y ¢ U. Then x € y < U°
contradiction. Conversly if the generic points are unique, let x # vy , then T # § , say, T &£ g, it
implies x ¢ § , then x € y° which separates x and y.

From the previous remark, if X is spectral, X is quasi-separated.

It also implies, that in the definition, you can only require that there exists a basis of the topology
which with qc open, which are stable by finite intersection (this is the statement ([§] , prop4 (i) <

(ii).
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Proposition 2.6 Let X be a spectral space. An open U is retrocompact iff it is quasi compact.

D : = If U is retrocompact, since X is qc, X nU = U is qc.
< : Let V be an open qc. Then U nV is qc. o

In the following part, X will always be a spectral space.
Proposition 2.7 T € X is locally constructible iff T is constructible.

D : T loc constructible iff V& 3V, x—neigborhhod, such that 7' n V,, is constructible in V,

< 3X = X;...u X, such that T n X is constructible in X;, and X; qc , using the fact that qc
open form a basis, and that X is qc, and that interecting with an open preserves constructible sets
< T constructible, since the X; being quasi-compact, they are retrocompact, and then T n X;
constructible in X; implies it is constructible in X , and T = u;(T n X;). o

Proposition 2.8 T is proconstructible iff T is an intersection of constructible sets in X.

We only have to show =.

T proconstructible iff Vo 3V, such that E n V,, is an intersection of locally constructible in V,,

< Vz3V,qc such that T'n V,, is an intersection of locally constructible. (using the fact that qc
form a basis, and the fact that locally constructible are preserved by intersecting with an open, so
intersection of locally constructible are preserved when intersecting with an open )

< Yz 3V, open qc such that T n V, is an intersection of constructible (using the fact that V, is
an open retrocompact of X

< X =X;vu...X, with X; qc and T'n X intersection of constructible in X;. Then since X is qc
so retrocompact , we see that T'n X; is an intersection of constructible of X, say T'n X; = nC; ;.
Then T = Ui=1.0(ns;Ci ) = Ny x...g, Yi=1.n Ci; which is an intersection of constructible of X.

Remarque 9 So what [{|] calls the patch topology Xpaich, is what EGA4 1.9.13 , calls the construc-
tible topplogyX cons- The open subsets are the ind-constructible subsets , and the closed pro-constructible.

Proposition 2.9 X.,,s is compact.

D : It is Haussdorf, because 3 open qc U that separates two points x,y , so U and U are open
that separate x,y.

If whe use the remark on compacity, let’s note C the subbasis of closed sets of X.,,s formed by
(arbitrary) closed and qc open (from X). Then we have to check that a family A of C which has
FIP has non empty intersection. WIth Zorn,if we take B a maximal family with the FIP containing
B , its intersection will be smaller than that of A , so we can restrict to B , i.e. suppose that A is
maximal with the FIP.

A = F u U, the closed, and the qc open. Then, because X is quasi-compact , G = nperF is a
closed non empty. Then G has the FIP F U (for the qc open , this is because the F; n U have the
FIP , that U is qc so their intersection, which is G n U is non empty), so by maximality , G € A.
If it wasn’t irreducible , let’s write it G = G7 U G5 .Then if AU {G;} i = 1,2 doesn’t have the FIP
, we would have an A; n G; = & , whence G n (A; n As) = & but A1 n Ay € A absurd. So say
G1 € Aso G = G and G is irreducible, say G = g , then g € F for all closed. and if g ¢ U for one
open , gnU = ¢ | absurd.

second proof : Let F be a family of B , the closed-basis of X ,,s of pro— constructible sets formed
by the F n U , F closed, and U qc open, with the FIP. With Zorn’s Lemma, we can assume it is
maximal. Then for FuU € F |, F or U € F , indeed oterwise, there are A, B e F with AnF =
and BnU = J, then F n A n B = (& which contradicts FIP. Let then F; be the closed sets of
F and Let then 7> be the open sets of 7. One has nrA = nr,ur. A. Then F = nr_Ais a non
empty closed set (by hypothesis). It is irreducible , bacause if F' = F} u F;, with the same argument
that above one shows one of the F; is F. So since X is spectral, F' = {z} for some z € X, and as
above one shows £ € Nz F. o

Corollaire 2.2 If X is spectral, the constructible subsets of X are exactly the closed-open subsets
Of XCO'I’LS
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D : = If U is qc open in X, by definition, it becomes a closed open of X.,,s, and since the closed-
open are stable by finite boolean combination we are done.

< Let U be a closed open of X ,,s- It is then compact , since closed in a compact. Since by definition
the U n V¢ form a basis of X.ons for U,V qc open of X, we can write U = u,=1. ,U; n V¢ with
U;,V; qc open, so U is constructible. o

Proposition 2.10 ([4] prop 4) Let X be quasi-compact, Ty, has a basis formed by gc open that
are closed under finite intersecion. The following are equivalent :

X is spectral

Every nonemty irreducible closed subspace has a generic point

every family of qc open of a closed subspace with the FIP has finite intersection.
Xeons s compact and has a basis of closed-open sets.

Xecons 1S quasi-compact

S SR e =

A family of pro-constructible sets with the FIP has non empty intersection.

D : (i) < (ii) this is a consequence of [7

(i) = (v) is.9
(v) = (vi) is just the alternative definition of quasi-compacity , and the fact that the pro-
constructible are the closed sets of X ons-
(vi) = (iv) Xcons is then quasi-compact. Since the gc open form a basis of X, X ., is Haussdorf
(so compact), and in fact by definition, the sets of the form F' n U with U qc open, and F the
complementary of a qc open form by definition a basis of X,,,s. Their complementary is F'¢ v U®
are also open in X ..,s , S0 F' n U is close-open.
(iv) = (iii) : Let F be a closed set and {U;} a family of quasi-compact open of F' with the FIP.
Each U; is qc , U; = F nV; where V; is open in X. Hence since the qc open form a basis of X,
we can write V; = v, W; , and since each U; is quasi-compact, there esists a finite subset (say
{1...n} such that U; = ui._,W; n F. Hence, each U; is proconstructible in X , and since Xcopns is
compact they have non empty intersecion.
(iii) = (ii) Let F be an irreducible closed subset. Put G = Npynon-empty qc open of#U. It is non empty
(a space Z is irreducible < finite intersecions of non empty open are non empty) , so the set of
non-empty qc open of F' has FIP and we use the hypothesis.
Suppose z # y € G . Then, U a qc open of X such that say z € U and y ¢ U (because X is Tj and
there is a basis of qc open. Then U n F' is qc open and non empty, so y ¢ G which is absurd. So
G = {z}. Suppose {z} # F. Then V = F\{z} is a non empty open of F so contains a non empty
qc open of V of F, but x ¢ V contradiction. o.

Proposition 2.11 ([4] Prop 7 , cf also [5] (rem 2.1 (vi) ) Let (X,S) a compact space , B =
{U} a family of closed-open sets (hence compact) of X. Let T the topology of X which has B as a
sub-basis.

Then (X,T) is Ty < (X, T) is spectral, and in that case the constructible subsets of (X, T) are
precisely the closed-open subsets of (X,S)

D : = isclear .

< Taking finite intersection of B doesn’t change the fact it is formed by closed-open sets of (X, S)
, SO we can assume B is a basis stable under intersection of 7.

By definition, 7 € S, hence it remains quasi-compact, and has a basis (B) stable under intersection
of quasi-compact open and is T; by hypothesis. So according to 2.10] we just have to prove that
(X, T)cons 1s compact.

Now, let V' be a quasi-compact open of (X,7T) , so by a quasi-compacity V = u,;=1._,U; with
U,eB. And V¢ = n;=;1. ,Uf. We can deduce from that :

t:(X,8) = (X,T)cons is continuous. Since it is bijective, and (X, S) is compact and (X, T )cons
is Hausdorff, it is a homeomorphism (the direct image of a closed is the direct image of a compact
so compact). So in fact (X,S) = (X, T )cons Which is then compact

The fact that constructible of (X, T) are the closed-open of (X,S) is then[2.2]. o
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Remarque 10 X a spectral space; T proconstructible. Then [, 2.1(i)] T is qc in the topology
of X and X.ons- In particular, since X is constructible, it is quasi-compact in X ons.- Note that |
Xeons s Haussdorf : indeed, X is Ty, so if x # y, let say U a neighborhood of x not containing y.
Since X is spectral, we can assume U is qc , so U and U¢ are open in X .ons and separate x and
y. S0, Xeons 18 compact.

Définition 2.10 (¢f [, 0] or [5, 2.2.1]) a map [ : X — Y between spectral spaces is said spectral
if it is continuous and f~1 preserves the qc open (which actually implies continuity)

Proposition 2.12 f is spectral iff f is continuous and f : Xcons — Yeons S continuous.

= let V be an open of Y., , i.€. a union u;V; with each V; constructible, i.e. boolean combination
of qc open. Since f~! commutes with boolean combination and preserves qc open f~1(V;) is
constructible.

< :if V is a qc open, it is constructible and f~1(V') is constructible open, so (J5, 2.1 (i)]) open qc.
[m]

Proposition 2.13 (Dickmann p.90) Let f : X — Z and g : Y — Z spectral maps. Then
7: X xzY > Y (taken in Top ) is spectral.

D : 7 factrizesas : X xz YV 5 X xY Ly, x Xz Y is closed, so proconstructible in X x Y , so
[D 3.3.1] a is spectral. with [D p88] , b is spectral too. o
Are qc map in Top stable by base change ?

Définition 2.11 A topological space X is locally spectral if there exists a covering X; such that
each X; is spectral.

Remarque 11 In [JJ] Theorem 9, it is proved that locally spectral spaces are precisely the underlying
topological spaces of schemes (what he called prescheme).

Proposition 2.14 (cf [6] p44) A locally spectral space X is spectral iff it is quasi-separated and
quasi-compact.

D : « is obvious. Then suppose X locally spectral, quasi-compact and quasi-separated. Then co-
ver it with X;,¢ = 1...n that are spectral. For each ¢ consider the inclusion : f; : X; — X. If
U is a qc open of X, then fi_l(U) = U n X, is quasi compact (since X is quasi-separated). We
deduce that f; : X;cons = Xcons is continuous. Then since one easily sees that (X1 []... Xn)cons =
Xicons L1+ 11 Xneons, one sees from the second one that it is compact, and f : (X1 []... Xn)econs —
X is continuous and surjective, so X ,,s is compact. Now, X is T , quasi compact and quasi-
separated, (this is local property (contrary to being T3 ) , so [4, Prop 4 (v) | X is spectral.o

Proposition 2.15 If f : X - Y is spectral , and T S X proconstructible, then f(T) is procons-
tructible.

D : T proconstructible mean T closed in X5, since f spectral < f: X ons — Yeons continuous
and that X.,,s and Y., are compact, f(7T) is compact, so closed in Y ,,s, S0 proconstructible. o

Proposition 2.16 if f : X — Y is spectral and surjective, S €'Y is constructible (resp. procons-

tructible) iff f1(S) is.

= is OK .

Conversly , by surjectivity of f , we have S = f(f~1(S)) and S¢ = f(f~1(9)°) . If f71(9) is
constructible i.e. closed open in Xcons, then f~1(S)¢ is closed to , their images are then S , S¢ |
which are both closed in Y, , s0 S is closed-open in Ye,,s, so constructible in Y. And if f=1(S)
is proconstructible, S = f(f~1(S) is proconstructible too. o
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Proposition 2.17 (Dickmann, scwartz Tressl, Spactral Spaces, theorem 3.3.1) . Let X be a spec-
tral space, and T < X. Then T is proconstructible iff T, with the induced topoloy, is spectral, and
i:T — X is a spectral map. Moreover constructible (resp qc open, resp complementary of gc open)
in T, are the traces of constructible(resp. qc open, resp complementary of gc open) in X.

From that we deduce somme consequences of [3, 2.1] when T is a proconstructible of X

(i) T is quasi-compact for X and X.ons. In particular an open subset is constructible iff it is qc,
and a closed subset is constructible iff its complementary is quasi compact (as a closed subset of a
quasi-compact set, it is anyway quasi-compact). Indeed T' = i~*(X) with X qc and i spectral so T'
is qc in X. And T is closed in X,,,s 80 compact in X.ons.

(ii) T is constructible iff T is proconstructible. Indeed = is clear, and if T is proconstructible, T
is closed-open in X ,,s S0 constructible

(iii) 7' = User{t}.

Let x € T and U = {U | U is a quasi-compact open neigborhhod of z}. Hence z € nyeyU.
Sincex € T ,YU €eUd ,UnT # & More generally, if Uy... U, el ,Uin...0nU,nT =
(ur nY)n...n (U, nT) # . So the {U n T}yey have the FIP | and are proconstructible in
X since T is and the U are, so their intersection is not empty (since X, is compact). Let then
te npeu(UnT),and V = me which is then open. If x € V , there exists U € U such that
x € U € V. But by hypothesis t € U € V which is absurd. So x € {¢}.

2.5 Valuations

Proposition 2.18 ([2] , Prop 9 §3) A wvaluation ring A is noetherian iff a discrete valuation
ring (i.e. 'y = Z) iff principal (because a finitely generated ideal of a valuation ring is principal)
For instance take v : k(z1,22) = A —> Z2,
Yayx” — —min(v | a, # 0}. Then R the associated valuation ring is not noetherian. Indeed, its
ideal correspond to the interval of Z2 * . Among them U, >0] — o, (—1,n)] is not principal, i.e. of
the form ] — o0, a]. This ideal is R.(%)ngo.

Remarque 12 Let v: A — I'g a valuation, R its valuation ring of the residual field of v. What is
the link beetwen A and R being noehterian ?

If R c K is a vualtion ring and R € A € K an intermediate valuation ring, what link betwen A
and R being noehterian ?

No link because R will be noetherian iff T = Z. So for the first question, take v : A = C,[T] —
(Q,+,<) , Y a;T* — max(|a;|) A is noehterian but T # Z, i.e. A noetherian but not R.

On the contrary, v : A = k[x;]ien — Z, Y, Asxly — —(min(i||A; # 0) where the A; € k[xq,...].
Now if R€ A C K then if R is noehterian it is a discrete valuation ring , and the only possiblities
for A are R and K.

But if R is not noetherian, there will exist a intermediate A noetherian (ie . discrete valuation ring)
iff there exists a quotient T'/H ~ 7 with H necesseraly a (the) maximal proper conves subgroup.
Sometimes it is the case, for instance v : k[x,y] — Z%,, An,m) Y™ > —min((n,m) |ag,m) # 0},
sometimes not, for instance in the case of a non microbial valuation.

Proposition 2.19 Letv: A — I'g a valuation with T' =T, and o : ' > G such that v ~ aov.
Then v is injective.

D : Otherwise let h € Ker(«)\{1}. Then there exists z € K the residual field of v with v(x) = h # 1,
but the same calculus in K, leads v(z) = 1. o

Remarque 13 A valuation on A : v : A — Ty is equivalent to give p = v=(0) a prime ideal of
A and a valuation v on qf(A/p which is also equivalent to give an equivalent class of morphism

A% k with k a valued field, where (¢, k) ~ (k',¢") if there exists an morphism of valued field
t:k — Kk such that ¢' =10 ¢.
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2.6 Embedding in P(A x A)

Proposition 2.20 (2.2) Let A be a ring, | a binary relation on A such that
1. alb or bla Ya,b.

If a|b and b|c then alc.

alb and alc implies alb + c.

alb implies that ac|be

aclbe and if not 0 ) ¢ then alb.

6.0)1.

Then there exists a unique equivalence class of valuation v s t | = |, where al,b iff v(a) = v(b).

AR

D : Let ~ be the e binary relation defined by a ~ b iff a|b and b|a.

This is an equivalence relation . Indeed reflexivity is a consequence of (i) , transitivity from (ii) ,
and symetry is obvious.

Let’'snot p ={a € A | a ~ 0} = {a | 0|a}. indeed , if a ~ 0 then 0|a, and conversly, if 0|a , since
anyway 1|0 (because of (i) and (vi) ) with (v) taking ¢ = a we get a|0, hence a ~ 0.

p is a prime ideal : first, if a,b € p , 0Ja and 0|b so with (iii) , Ola + b , hence p stable by +. and
with (iv) taking ¢ = —1 we have 0| —a so p is a subgroup. In fact (iii) gives that p is an ideal. Now
if a ¢ p and ab € math frakp, then 0 f a (cf previous remark) , 0|ad, i.e. 0.alb.a and then with (v) ,
0|b, i.e. b € p. So p is prime.

Put B = A/p. Then | factorises through B. Indeed let a,b € A and c € p. If a|b , then since anyway
a|0 and O|c by hypothesis, a|c so (iii) a|b + ¢ hence if a = a’modp we have a|b iff a/|b. In particular
a ~ a' and we conclude using the transitivity of | that | factorises throug A/ ~, and hence also
throug B, and that this relation satisfies also (i) — (vi). Actually (v) becomes even ,

aclbec and ¢ # 0 implies alc.

Let K = qf(B). Let z € K , with x = * = Z—: Then v|u iff v'|v'.

Indeed if w = 0 then «' = 0 and the two assertions are true.

Otherwise if v’|v/ then v'u|uw’ but wv’ = v'v so vu'|uv’ and since w’ # 0 , v|u.

It then makes sense to define R = {r e K,z = % | v|u}.

This is a valuation ring :

leR.

If % and Zj—: € R then v|u hence vv'|uv’, v'|u’ so wv'|uw’ hence by transitivity vo'|uu’.

Also vv'|uv” and vv'|u'v so (iii) vv'|uv’ 4+ u'v, hence % =2+ Z—: e R.

Finally, if z = % € K, then by (i) , uv or vju so z or 2=' € R.

R is then a valuation ring say with K = T' defining its valuation, and if f is the natural morphism
f:A— B — K, then v = wo f is a valuation , and by definition of R , if b ¢ p, a|b iff %barO}

Remarque 14 We could consider T'g = (A/ ~, X), check it is an oredred monoid with , a = b iff
alb. Then T' = To\{0} would be an orederd submonoid. Then v : A — (Lo, <) is “a valuation in
an orderd monoid”. So if we could find (T, <) — (G, <’) an injection of orderd monoid with G a
group, we could affirm that v comes from a “real” valuation (with value in a group).

This could lead to consider the forgetfull functor :

for : Ab — {commutative monoids }, check that it has a right adjoint i defined by i(M) = (M v
M=1Y*/ < (a).(b) = (ab),aa=1 = 1,ab = ba, (ab)~! = (a=1).(b=1) >. Then wonder if

*the natural morphism M — (M) is injective ?

*Can we extend the oredering of M to i(M) ¢

It won’t be automatic : indeed if T' = {—n,—(n —1),...,—1,0} monoid for a.b = max(—n,a + b).
Then

v k[X] — FO

P # 0+ —min(n + 1,valx (P))

0> —m-—1

and identifying —(n + 1) with a null element is a "monoidal“ valuation. But (T', <) doesnt in an
ordered group (it has torsion, and ordered groups don’t), v doesn’t commes from a valuation : |v
verifies (i) — (1v) and (vi) but not (v) :

0.X[, X" X = X"t 0} X , but however 0 f X™.
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We then consider ¢ : S(A) — P(A x A) defined by

¢(v) = |, with a|,b if v(a) = v(b). Then the 6 conditions in the previous proposition show that
im(¢) is a closed set of P(A x A), that we endow with the product topology.

Moreover ¢ is injective : indeed if | = |, = |, then we easily see that supp(v) = supp(w) = {a €
A such that 0la} hence, K the residual field of v and w are the same, and the valuation ring on them
induced by v and w are the same (because |, = |,) so they induce the same valuation on K. Hence
through ¢ we identify S(A) with a closed subset of P(A x A). It then induces a topology (S(A),T1)
. P(A x A) being compact, and S(A) closed, (S(A),T}) is compact. In it the subsets of the form
{v]v(a) <o) #0} ={v|v(a) <o)} n{v]vbd) <v(0)}° are open-closed by definition of the
product topology on P(A x A). The topology T they generate is T : if v # w,€ S(A) then there
exists a,b € A such that v(a) < v(b) and w(a) > w(b) . If v(b) # 0 then v € {z|r(a) < z(b) # 0}
and not w. Otherwise v(a) = v(b) = 0 so w € {z | z(b) < z(a) # 0 and not v.

Lemme 2.1 Endow P(X) = {0,1}X with the product topology. Then the closed open subsets are
the finite boolean combination of subsets P, = {U c X | x € U}.

D : Let V be a closed open subset of P(X). Since P(X) is compact (Tychinov) V is compact .
Now by definition of the product topology , the P, and their complementary form a sub-basis of
P(X) so we can conclude.o

In S(A) the sets P, ;) correspond precisely to {v | v(a) = v(b)}. Hence usmg- 2.11) we have :

Proposition 2.21 S(A) be endowed with the topology whose subbasis is the {v | v(a) < v(b) # 0}.
S(A) is spectral and its constructible subspaces are the boolean combination of {v | v(a) < v(b)}.

2.7 specializations

Proposition 2.22 (cf [5] 2.2) Letv: A — T'g and H a convex subgroup, w = v/H : A — (I'/H)q
is called e secondary specialization. v € {w} in Spv(A).

D:let U= {x | z(f) S x(g) # 0} be a basic neighborhood of v, i.e v(f) < v(g) # 0. Then
w(f) <w(g) and v(g) #0,ie. v(g)el ,sow(g) e'/H andis # 0,sowe U. o

exemple : v : A = k[z,y] > Z2,
> an Y™ > —min{(n, m)|a, m # 0}
There are 3 convex subgroups : {1} =T
(0,2) =T4
Z=T9
cl', = {1}, and then :
v/To =v , v/y1 = v, (valuation of x).
U/F2 = Udiscret-
vl : A — {1,0} with v|[To(f) = 1 iff v(f) = 1, ie. if f(0,0) # 0, i.e. it factorises through
A -k, f— f(0,0), and then with the discrete valuation on k.
U|F1 A > Z() s
f—u(f) it v(f) € (0,Z), 0 otherwise. factorises through A — k[y], f — f(0,y) and then the y—
adic valuation.
v|ly = v.
exemple of the unit ball Let A = k{T} , r = |lambda| < 1, \ € k with k a non-archimedian
field. Define :
nr Y a; T — max(|a;|r) € R

r o a; Tt max(|a;|rt, —i) SR x Z
Ner : Y a; T — max(|a;|r’,i) SR x Z
From what we have seen above since 7., and 7., are secondary specializations of 7, (with H =
0 x Z), they both belong to {n,.}. The contrary is false (this is a consequence of Spv(A) being T )
, concretely, if U = {z| z(T) < x(\) # 0} then n, and n<, € U , but 7~, doesnt. In the same way :

= {z| x(A) < 2(T) # 0} then n, and 7~, € V , but 7, doesnt. So the specialization described
above is the only one existying between these three points.
This shows the difference between the topology of Berkovich and Huber. Indeed if U = {v| v(X) <
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v(A\)} then n.,. € U and if U was open in the Huber topology, it should contain 7, but this is not
the case.

2.8 cI',(1)
I =(t1,...,t,) an ideal.

Lemme 2.2 (2.4) If v(I) n I’ = J there exists a greatest convex subgroup H such that v(i) is
cofinal in H , Vi € I. Furthermore v(I) # {0} and v(I) n H # (.

D : The existence of H is a consequence of [I} But in this particular case , we have v(i) < 1Vi €
I.Otherwise v(i) > 1 and then € ¢I' by definition of it. Let h = max(v(¢;));j=1..n = v(t1) say. If
h = 0 then v(I) = 0 and H = T',. Otherwise, f i € I , i = Y apty and v(i) < (max(v(ag)).h
say v(i) < v(a)h. So v(i%) < v(a?)h? = v(a®t)v(t1) < v(to) since a’tinl so v(a’ty) < 1. So
v(7) is cofinal in < h >,onpy=< v(t1) >conv. Conversly, if Vi € I , ¢ is cofinal in H then wv(t;)
is cofinal in H and H S< h >ony. S0 the greatest convex subgroup in which v(I) is cofinal is
H =< v(t1) >cony which then contains v(t1) € v([).o ¢I'y,(I) is then the union of ¢I', and this
subgroup H if v(I) n Iy, = .

Lemme 2.3 (2.5) IfT', # cI', (otherwise cI',(I) =T,). Then the following are equivalent
1. Iy(I) =T,
2. v(i) is cofinal in T, for allie I
3. v(1) is cofinal in T, for a set of generators of I

D: 1= 2:since cI', # Iy , we can’t have v(I) n ', # & , and by definition v(I) is cofinal in T',,.
2 = 1: then v(I) n cl'y, = &. Otherwise if v(i) incl, , g < ¢y, then there exists a n such that
v(i)" < g < cI'y, which is absurd. Hence v(I) n cI', = & and ', (1) =T,

2 = 3 is clear.

3=2:Theset J ={ae€ A|v(a)is cofinal in I',} is an ideal. Indeed first v(J) < 1 , and if
geTl, ,abe J,Insuch that v(a®) < g and v(b") < g then v((a + b)?") < g. If x € A, then
if v(z)leql, v(azx) < v(a) and ax € J. Otherwise, v(z) = 1, then v(z) € Iy, v(az) < v(z). Now
if 1 < v(ax) we have v(ax) € cI', and v(a) too, which is impossible since ¢I', # T, and v(x) is
cofinal. Hence v(az) < 1 for all € A. Let then g € I',. There exists n such that v(a)” < g then
v(ax)" = v(a™)v(az™t) < v(a™) < g. So J is an ideal, and 3 = 2.0

Remarque 15 If I = A thenv(l)nCT, # & so cI'y(I) = Iy, , and then Spv(A, A) ={v | I, =
Ty}

3 Continuous valuation of f-adic rings

Remarque 16 Let A be a Tate ring, and v : A > T' =T, be a continuous valuation. Then cI' =T.
Indeed take x a nilpotent unit. Then x is cofinal in I' , and < & >conpo=I". It is even true that the
subgroup generated by {v(a) = 1} is I'. So in that case there are only secondary specializations.

Theorem 1 (3.1) Cont(A) = {ve Spv(4,A.A”) | v(A™) < 1}.

D : If v is continuous. Then clearly v(A™) < 1. Then, if ¢I', = I', OK. Otherwise let A € A™,
v(a™) — 0 so v(a) is cofinal in T', and accoriding to ve Spu(A,A.A”), ie I'y(A.A") =T,.
Conversly let v € Spv(A, A.A™) such that v(A™) < 1. First let’s show that Va € A, v(a) is cofinal
in T,. If T', # ¢, then this is true by definition of Spv(A, A.A”) and cI',(A.A™). Otherwise
I, =cl, , hence if g€ T', 3t € A such that v(t) = v(g)~!ie. v(g) = v(t)~! . Hence if Ae A, In
such that v(a"t) <1 = v(a") < g.

So let Ag, I = (b; ...by) be an adic ring of definition for A. Since the b; € A, the v(b;) are cofinal
from what we’ve just seen, in particular v(b;) < 1, and we easily see that for v = (kq,...k,) with
|v] = N for a big enough N , v(b”) < g . Hence since v(I) < 1 we have v(IV*+!) < g which shows
v is continuous. o

Theorem 2 If A is a ring which is Tate, A.A”"= A and hence Cont(A) = {v e Spv(A) | I, =T,
and v(A”) < 1
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3.1 counter-example continuous valuations

1. v(A) <1, v(A”) <1 : inspired by [2] §10 lemma 1 which says that if v : k — Ty is a
valuation of the field k and g e T w : kK[X] = T, Y a; X" — max(v(a;)g*) is a valuation.
Let v: A=k{X} > Z xR, > a,X" — max(—n, |ay,|). This is a valuation, v(A”") < 1 and
v(A4%) < 1 but it is not continuous : ¢[', = 0 x Z. Or if 7 € k° v(7)™ isn’t aribtrary small
although 7™ — 0. Here v € L(A)\Cont(A).

2. A Tate ring and a v such that v(A”) < 1, v(A°) < 1 but not continuous. Take A =
Zp|X, X7 2 Ag = Zp[X] 21 = Ap.X. The X-adic toplogy on Ag extended to A makes it
a f-adic ring. Mainly because if P € A , f,, — 0 then Pf, - 0 and if g, — 0, frg, — 0.
Then A” = 1; A" = Ag. Let v : A — Z% | v(} a; X*) = max(|a;|, —i). Then v(I) < 1,
v(A”) <1 but X™ — 0 however v(X™) doesn’t converges to 0 , i.e. v(X) isnot cofinal in T',,.
(Also because cI', = 1 x Z # Z2.)

3. A a f-adic ring , v : A — T'g such that v(A™) < 1 but v not continuous.
Take A = Z,[X] equiped with the (X,p)-adic toplogy, and v : 4 — Z* |, Y a; X" —
max(|a;|p, —i). Then on easily checks that A = (p, X) and that v(A”) < 1. But X — 0
however v(X™) = (1, —n) doesn’t converge to 0.

Proposition 3.1 (cf [5] 3) The integral closure of the subring Z+ A= {n+a | neZ,ac A}
, B is the smallest ring of integral elements of A.

D : First note that A" is open. Indeed if (A’,I) , is an adic ring of definition of A, I < A™ is open.
So Z + A is a subring of A° (note that Z + A™ is well a subring, because A is stable by + and
X ).

Now let’s show that A" is integrally closed in A.

First let’s prove :

Lemme 3.1 If B is a bounded subring in A f-adic, and A € A° then Bla] is bounded.

D : let (Ao, I) be a ring of definition. I"™ a neighborhood. Im such that {a*}I™ < I", and p such
that BI? <€ I™. Then ba™I? < a™I™ < I™. o. Hence since Z is also bounded, we see that if
ag,...an € A°, Z]ag, ... ,ay] is also bounded.
So let x € A be integral on A°, i.e. 2" = ag + a1 + ...a, 12" % Call B = Z[ag...a, 1]. By
induction we got that P € B4+ B.x +...+ B.z" ! Vp. So if I" is a 0 neighborhood, we can find k
such that B.x'I* < I™ for all [ = 0..n — 1. Then xPI* < I"™ , ¥p. Hence x € A". So A" is integrally
closed in A , so (Z + A)closure A < 4,
Conversly, if B € A° is open and integrally closed in A, let x € A, so that 2™ — 0 , hence there
exists a n such that 2™ € B since it is open, hence x € B since it is integrally closed. o

[3.6] supposes that {0} is an ideal : let z € 0, a € A V a 0O-neigborhhod. We can assume
V=-V,thenO0O€cax+V < areV,but A— A, u~— au is continuous so 3 a neighborhood of 0 ,
W such that aW € V' | and x € W because z — W is a neighborhood of zs0 0 e x — W ie. x € W.

]

3.2 Affinoid rings

Définition 3.1 A subring of A is called a ring of integral elements if it is open , integraly closed,
and contained in A”.

An affinoid ring is a pair (A, AT) with A a f-adic ring and A" a subring of integral elements.
By a ring homomorphism of affinoid ring it is meant f such that f(AT) € BY.

Lemme 3.2 Let J be an ideal of A. J is open < A~ C/J

D : = Let ae A, so that In such that a™ € J.
< Let (Ao, I) be a ring of definition, I = (i1,...,4,). Since I € A S \/J , for each j = 1..n there
exists k; such that zfj € J. Then k := Y k; and I* < J which is then open. o

This explains that if 7.4 is open, A € v/J so U = {v € Spv(A, A.A”) | v(t;) < v(t) # 0} a
rationnal subset.
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Remarque 17 On rational domains. Let’s restrict to the case A a ring Tate. Then for [5] a
rationnal subset of Spa(A) is R(L) = R = {v | v(t;) < v(s) # 0} with (t;) = A. Hence if
v e {v]vt) < v(s)R since Y ait; = 1 if v(s) = 0 we have v(t;) = 0 so v(l) = 0 which is
impossible, so R = {v | v(t;) < wv(s)}.

Now let’s consider S = {v | v(t;) < v(s),i = 1l.n} where (t;,s) = A. If we had t,,11 = s we still
have S = {v | v(t;) < v(s),i = 1.n + 1} which is rationnal in Huber’s sense. So the two possible
definition of R(L) , with (T) = A or (T,s) = A give the same class of subsets.

3.3 analytic points

There exists a finite set TS A™ such that T.A is open. Indeed let (B, I) a ring of definition ,
with I = (by,...b,). Then T = {by,...,b,} works.

Proposition 3.2 (Spa(A)), = {z | supp(z) = v=1(0) is not open }
={z | z(t) # 0 for one t e T}
= UteTR(%)

D :if z € (Spa(A)), then supp(z) is an ideal, not open, so T' & supp(z) so 3 | z(t) # 0.
Conversly, if z(t) #0 ,te A, 2(t") # 0 but converges to 0 so supp(z) is not open. o

Proposition 3.3 If v e Spa(A) is analytic, then v is microbial.

D : We have A — A/supp(v) = B — qf(B) = K and let R be the valuation ring of K associated
to v.

Let also Ag, I be a ring of definition of A. First note that saying that v is analytic means that
supp(v) is not open (it is closed, but we don’t care), so I & supp(v) and in fact neither I™ for any
n. Then the topology on R is I-adic (more precisely we should define J = R.{i | i € I} and say R
is J-adic. Indeed, first J is an ideal of R wich is not {0} (because I & supp(v)) , so it is open. And
if ge T, , we have a n such that v(I™) < g. Then v(J™) < g which shows that the topology of R
is the J-adic topology. Since J™ # {0} for all n , the topology is not discrete. So accoridin to the
criterion 4 , v is microbial. o

3.4 constructible sets in the respective spaces

In Spv(A), the constructible subsets are finite boolean combination of subsets of the form
{v | v(a) < v(b)} (prop 2.2 in [5]). This includes for instance the subsets {v | v(a) = v(b)} and
{v] v(a) = 0}.

For instance U = {v € Spuv(A) | v(a) # 0} is quasi compact open (i.e. constructible and open, i.e.
proconstructible and open) , because indeed it is open, (= {v|v(a) < v(a) # 0} and constructible.

In Spu(A, I) the constructible subsets are the boolean combinations (finite) of rational domains :
U=R(%L)={ve Spv(A,I) | v(t) < v(s)Vt € T} where T is finite and I < V/T.A.
Cont(A) = {ve Spv(A, A. A7) |v(A™) < 1} is a proconstructible subset of Spuv(A, A™.A).

Let’s consider ~ Cont(A) Then a and b are not spectral in general.

[
Spv(A, A7 A) 21— Spv(A)

Indeed otherwise b~!{v(a) < v(b)} would be constructible, but it is hard to imagine how it could
be a boolean combination of rationnal subset , particularly when b = 0 in which case it is a
Zariski closed subset. More precisely if A is an affinoid algebra , f # 0, m € k\{0} , then
b Y(w(f) # 0) = Unzo{v(f) = v(7™)} and you can’t extract a finite cover from the right hand
side, so it is not quasi compact. So b isn’t spectral , and since b = coa , and a is spectral, ¢ isn’t
spectral.
according to [3, 2.5 , 2.6] :
r: Spv(A) - Spv(A,I)
v — v|cl',(I) is spectral. Then take A = k[t] , [ = A

It is false to say that r~1{v € Spv(A, A) | v(a) < v(b)} = {v e Spv(A) | v(a) < v(b)}.

instance U = r~'{v | v(T) = 1}. Let vr be the T—adic valuation. cI',, = {1} so cI',, = {0}
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and vr|{0} = w = the trivial valuation . Hence since w(T) > 1, vy € U = r~ v | v(T) = 1} but
vr ¢ {ve Spu(A) | v(T) =1} so r~Hov | v(T) = 1} # {ve Spv(A) | v(T) = 1}.

This helps to understand the fact that :

r: Spv(A) — Spu(A,I) is spectral [5 2.6(ii)] , and surjective, so T' € Spuv(A, I) is constructible iff
r~1(T) is . So if it was true that r—{v e Spv(A,I) | v(a) < v(b)} = {v e Spv(A) | v(a) < v(b)},
the subsets {v € Spv(A,I) | v(a) < v(b)} would be constructible.

4 Tate rings of topologically finite type over fields

Proposition 4.1 Let A be a k-affinoid algebra, and v € Spa(A, A°). Then vy, is the initial valua-
tion of k.

Indeed, v is a valuation with v(x) > 1 when x € A"nk = k. Conversly if z ¢ A"k , then 271 € A™
sov(z™1) <1 (cf 3.1[5] ), ie. v(z) > 1. So v(x) < v(y) iff || < |y| so they are the same.
More conceptually (k,k”) — (A, A°) is a continuous morphism of affinoid ring, so induces f :
Spa(A, A”) — Spa(k, k). What we’ve shown is somehow the fact that Spa(k, k") = {||} where || is
the valuation on k, because in general (cf [6] 1.1.6) if A = (A™, A7) is an affinoid fiels, Spa(A) is
the set of valuation ring B, such that AT € B € (A™)". In our case it gives k* € B € k°, so the
only possiblity is k".o

If Ais a Tate algebra, Ly = {v € Spv(4 | v(4") < 1 and v(A”) < 1}. We note (abuse of
notation) Spa(A) := Spa(A, A°). Then

c Cont(A) <
Max(A) € Spa(A) Spv(A)
CLyc

Proposition 4.2 ([8] the. 10.2) Let K be a field, A S K a subring p a prime ideal of A. Then
there exists a valuation ring R of K such that A S R and Mr n A C p.

Corollaire 4.1 Let k be a valued field and K an extension of field, then there exists a valuation
on K that extends the one of k.

D : Let A be the valuation ring of (k,v), p = m4. Then there exists R a valuation ring of K with
A RandmrpnAcmy .Solet C =FknR. Then C = A (for instance because C is a k-valuation
ring that extends A, with the same maximal ideal, or because if x € C\A, v(z) > 1, 27! € m4 but
since mp D2 my , ! € mp which contradicts z € R. ©

Proposition 4.3 Let A be a ring, I = (a;)jes an ideal. Then 7 : A — A/I induces Spv(r) :
Spv(A/i) — Spv(A). Its iamge is {v | v(I) = 0} and it is a homeomorphism on its image. In
particular, if 1 is of finite type, this image is a constructible subset.

Proposition 4.4 (cf [5] 4.1 or [7] Prop. 2.1.1) Let f : A — B a morphism of finite presenta-
tion and U € Spu(B) a constructible subset. Then Spv(f)(U) is constructible .

D : f decomposes as A N, [X1,...X,] EENy - A[Xy,...,X,]/T where I = (a1,...,a,) is
finitely generated. Let U be a boolean combination of {v(a)Qv(b)} with a,b € A[X] ... X,], then
Spv(fz) is the same boolean combination of {v(a)Ov(b)} N {v(a;) =0, i =1...n}.

So we can restrict to the case B = A[X},...,X,], U a boolean combination of {v(P) < v(Q)} .
Since P € A[X4,...,X,], 3 an interger m, p1,...pm € A and p € Z[Y1,...,Yn, X1,... X,,] such
that P = p(p1,--.,Pm, X1, Xn), and also Q = q(q1,-- -, qn, X1y -, Xn)-

An element w € Spv(A[X;] represented by B Y kis in U iff the combination of formula p(pi,tj) <
q(gr,t;) is true where t; = (Xj;).

Hence A % k corresponds to a valuation v of A, it is in Spv(f)(U) iff there exists a diagram

B~

L
1]
A ¢ k

—_—
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But when ¢ and ¢ are fixed, a ¢ giving rise to a commutative diagram as this one is equivalent to
the data of ly,...1, € L.
Hence v € Spu(f)(U) iff
3 an extension L of k and [y, .. .1, € L such that the formula P(ly,...,l,) < Q(l1,...,l,) is true iff
3¢ : k — L an extension with L algebraically closed valued field (using , and such that the
following formula holds

Al; ... l,boolean combination(|p(p;, ;)| < |¢(gk,l;))

For such a L, if it is trivially valued, we can embed it in L(X) with the X-adic valuation so that
it isn’t trivially valued anymore so that

< v : k — L an extension with L algebraically closed non-trivially valued field (using , and
such that the following formula holds

Al; ... l,boolean combination(|p(p;, ;)| < |q¢(gk,l;))

But using elimination of quantifiers for the non-trivially valued fields (warning you can’t eliminate
Jz # y # 0|x| # |y|, which precisely defines the non trivially valued fields), this formula is equivalent
to a universal (meaning independant of L ) formula ¢(p;, qi), which defines a constructible subset
of Spu(A).o

Theorem 3 (4.1) L, is the closure of Max(A) in the constructible topology of Spv(A)

D : First L(A) is well closed in this topology (cf Prop 2.2) wich says that a basis for the constructible
topology is the sets {v | v(a) o v(b)} ,o € {<,<}. o

Proposition 4.5 Let f: X — Y a continous map beetwen toplogical spaces, ACY.

1. f=HA) € f~H(A)

2. if f is open f~1(A) = f~1(A)
D : 1f71(A) is closed and contains f~!(A).

2 Let z € f1(A) and U a neigborhhod of x. We have to show that U n f~1(A) # &. But f(U)
is open, so neigborhhod of y = f(z) € A, s0 f(U)n A # &. Soif z € f(U)n A, 2 = f(u)

we fTHA) N W) S fTHA) U, = fTHANT # F. o

4.1 Prime filters

Maz(A) denotes the set of prime filters of Maxz(A) , (precisely the prime filters of the lattice
of finite union of rationnal subsets (cf Dickmann).
Cor 4.5 : Let F be a prime filter, define 7/ = {Max(A)\R | R ¢ F} and define W = F v F'.

||Let Wl, ey W, € W, then Nic1.o Wi #

D : in this intersection there is in fact one rational domain R (because they are stable par n) , and
some R¢ with R; ¢ F. Then if we had R € U;R; , R = U(R; n R) is an element of F so one of the
R n R; must also be in, so R; also which is absurd. So R & U,;R;,i.e. Rn; R{ # J. o

|D := AwewW # &. Let z € D, then s(z) = F

D:s(x)2F:if FeF,zeDsoxekF.

Conversly let U n Maz(A) = U € s(z) ,ie. z€ U. If we had U ¢ F , then V = Maz(A)\F e W ,
and thenxef/i soz ¢ U , absurd.o

472 : F € Max(A), then :

1{ae A|VFeFixe F|a(x)=0}

2={a | Yee k*3IF € F | |a|r < le|}

3={a|Vr>03FeF ||alrp <r}=pr

2 =3 is clear.
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1c3:ifael Let F} = {x € Maxz(A) | |a(z)| < r} and F» = {& € Maxz(A) | |a(z)| = r}.
Fy v Fy = Max(A) so one of it is in F. Fy ¢ F because a € 1 , and Va € Fy a(xz) # 0. So F} € F,
and a € 3.

If a € 3. Let F € F such that a(z) # OYx € F. Then 3r > such that |a(z)| = 2r Yz € F. But since
a € 3 3G € F such that |a|g < r. Then F n G € F , but is empty. Contradiction, so 3z € F' such
that a(z) = 0.

Remark : with 3 , we see that pr is prime ideal. Indeed if a,b € 3 and r > 0, IF,, F, such that
la|p, < 7|... Then |a + blp,~p, <7 If ce A, |ac|p, < |c|lalr, < |lc|r.- And if a,b € A and ab € 3.
Let r > 0, F such that |abl; < r? F, = {z | a(z)| <1}, F, = {z | |b(x)| <7} . Then F, U, 2 F,
so one of them is in F.

Rk : we prooved that p% = {a | IF € F,r > 0 |Vz € Fla(z)| = r}.

s(m) = {R | R contains all but finitely many open balls of radius 1}.

o

C s(n<1) ={R | R 2 (B(0,1) minus some balls od radius< 1} .
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