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These are notes of a talk I gave for the lectures Linear groups and heights hold by Walter Gubler and
Clara Löh in Regensburg during the winter term 2015-2016. The goal of the this talk is to explain in details
the reduction of the Uniform Tits alternative from C to Q, the algebraic closure of Q, following [3, § 3.1]
and [2, § 9].
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Introduction
We are interested in the following result.

Theorem (UTA: Uniform Tits alternative). For any d ∈ N there exists N(d) ∈ N such that if K is an
algebraically closed field of characteristic 0, S ⊂ GLd(K) is a finite symmetric set with 1 ∈ S, then

• either 〈S〉 is virtually solvable

• or SN(d) contains a generator of a free group with two generators: F2 ⊂ 〈S〉.

Let us consider the following weaker statement.

Theorem (UTA(Q̄)). For any d ∈ N there exists N(d) ∈ N such that if S ⊂ GLd(Q) is a finite symmetric
set with 1 ∈ S, then

• either 〈S〉 is virtually solvable

• or SN(d) contains a generator a a free group with two generators: F2 ⊂ 〈S〉.

The aim of this lecture is to prove

Proposition. 2.1
UTA(Q̄)⇒ UTA.

There will be three main ingredients in the proof.

Proposition. 1.8 Let Φ be a first order sentence. If K and K ′ any algebraically closed fields of characteristic
0

K |= Φ if and only if K ′ |= Φ.

Proposition. cf. Section 2. UTA can be expressed with first order sentences.

To prove this fact, we will need:
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Proposition. 3.1 For each integer d, there exists an integer c(d) > 0 such that if K is a field of characteristic
0, for every subgroup G ⊆ GLd(K), G is virtually solvable if and only if there exists P ∈ GLd(K) such that(

G : (G ∩ (PTd(K)P−1))
)
≤ c(d)

where Td(K) is the group of invertible upper triangular d× d matrices.

1 First order logic
We refer to [5, chapter 1] for this section. The goal of this section is to explain proposition 1.8. We fix a
countable set of variables V = {a, a1, a2, . . . , b, b1, b2, . . . , z, z1, z2, . . . , }.

1.1 Definition. An atomic formula Φ is an expression of the form

f1 = f2

where f1, f2 ∈ Z[a, a1, a2, . . . , b, b1, b2, . . . , z, z1, z2, . . .].

1.2 Definition. The set of formulas is the smallest set F such that

i) F contains the atomic formulas.

ii) If Φ ∈ F , then ¬Φ ∈ F .

iii) If Φ,Ψ ∈ F , then Φ ∧Ψ, Φ ∨Ψ , Φ⇒ Ψ and Φ⇔ Ψ are in F .

iv) If Φ ∈ F then for any variable ω ∈ V,

• ∃ω Φ is in F
• ∀ω Φ is in F .

We will write f1 6= f2 in place of ¬(f1 = f2). The notation ∀ω, ω′ (resp. ∃ω, ω′) will be used to denote
∀ω ∀ω′ (resp. ∃ω ∃ω′). We will use brackets in formula to avoid ambiguity.

1.3 Definition. If Φ is a formula and ω a variable, we say that ω is a free variable of Φ if ω occurs in Φ
not in the scope of a quantifier ∃ω or ∀ω. We say that ω is a bound variable if ω occurs in the scope of a
quantifier ∃ω or ∀ω. We say that Φ is a sentence if it has no free variables.

If Φ is a formula, we write Φ(ω1, . . . , ωn) to express the fact that the set of free variables of Φ is contained
in {ω1, . . . , ωn}.
Remark. Let Φ be the formula (x+ y = 0) ∧ (∃x x2 = y). Then x is at the same time free and bound. We
want to avoid this. However, we might replace Φ by the equivalent formula (x1 + y = 0) ∧ (∃x2 x

2
2 = y)

where this problem disappears. We will tacitly restrict to such formulas, where a variable is not at the same
time free and bound.
1.4 Example.

Φ0(x) = ∃y(xy = 1)

Φ1 = ∀x, y (x+ y = y + x)

Φ2(x) = ∃a (a2 = x)

Φ3 = ∀x ∃a (a2 = x)

Φ4 = ∀p∀q
(
(4p3 + 27q2 6= 0)⇒ ∃x1, x2, x3 (x3

1 + px1 + q = 0 ∧ x3
2 + px2 + q = 0 ∧ x3

3 + px3 + q = 0

∧x1 6= x2 ∧ x1 6= x3 ∧ x2 6= x3)) .

In Φ1, x, y are bound variables, in Φ2, a is bound and x is free, in Φ3, x, a are bound, in Φ4, p, q, x1, x2 are
bound.
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1.5 Definition. Let Φ(ω1, . . . , ωn) be a formula whose free variables are contained in {ω1, . . . , ωn}. Let K
be a field and let λ = (λ1, . . . , λn) ∈ Kn. We define

K |= Φ(λ)

(to be read the field K satisfies the formula Φ at (λ1, . . . , λn)) inductively on the formula Φ.

i) If Φ is the atomic formula f1 = f2 then K |= Φ(λ) if and only if the equality

f1(λ) = f2(λ)

holds in K.

ii) If Φ = ¬Ψ then K |= Φ(λ) if K |= Ψ(λ) does not hold.

iii) If Φ is equal to Ψ1 ∧ Ψ2 then K |= Φ(λ) if and only if K |= Ψ1(λ) and K |= Ψ2(λ). Similarly for
∨,⇒,⇔.

iv) If Φ is the formula ∃xΨ(ω1, . . . , ωn, x) then K |= Φ(λ) if and only if there exists an element α ∈ K such
that K |= Ψ(λ, α).

v) If Φ is the formula ∀xΨ(ω1, . . . , ωn, x) then K |= Φ(λ) if and only if for all elements α ∈ K it is true
that K |= Ψ(λ, α).

We write K 6|= ϕ(λ) when K |= ϕ(λ) does not hold.
1.6 Example. i) For any field K one has K |= Φ1. Indeed Φ1 just says the additive law of K is commutative

which is true in fields.

ii) Given α ∈ K, K |= Φ2(α) if and only if α is a square root in K. For instance Q 6|= Φ2(3), R |= Φ2(3),
R 6|= Φ2(−1), C |= Φ2(−1).

iii) One has K |= Φ3 if and only if all elements of K have a square root. For instance

(a) K |= Φ3 for
K = Q̄,C,

⋃
n≥1

Fp2n . . .

(b) K 6|= Φ3 for
K = Q,R,Fpn ,Qp,C(T ) . . .

iv) The formula Φ4 expresses the property that any degree 3 polynomial P whose discriminant is nonzero
has at least three distinct roots. One deduce from this that K |= Φ4 if and only if any degree 3
polynomial in K has a root. In particular all algebraically closed fields satisfy Φ4.

1.7 Example. The property Q "for any elliptic curve E defined over K, the group E [7](K) of 7-torsion K-
rational points has cardinality 49" is a first order property. First remind that given a, b in K such that
4a3 + 27b2 6= 0, one can associate an elliptic curve Ea,b defined by the equation in x, y

y2 = x3 + ax+ b.

There is a group law defined on Ea,b(K) ∪∞ where ∞ is the point at infinity of Ea,b, and this group law is
defined by polynomials with coefficients in Q(a, b). It follows from this that there exists a first order formula
Φ(a, b, x, y) such that for α, β, γ, δ ∈ K

K |= Φ(α, β, γ, δ)

if and only if Eα,β is an elliptic curve, and (γ, δ) ∈ Eα,β [7](K). Hence the property Q can be expressed by
the formula

Ψ = ∀a, b
(

4a3 + 27b2 6= 0⇒
(
∃x1, . . . , x48, y1, . . . , y48( ∧

i=1...48

Φ(a, b, xi, yi) ∧ (∀x, y Φ(a, b, x, y)⇒
∨

i=1...48

x = xi ∧ y = yi

)))
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1.8 Proposition (3.2.2 [5]). Let Φ be a first order sentence. Then if K and K ′ any algebraically closed
fields of characteristic 0

K |= Φ if and only if K ′ |= Φ.

1.9 Corollary. Let Φ be a first order sentence. If Q̄ |= Φ, then for all algebraically closed field K of
characteristic 0, one has K |= Φ.

Let us make some remarks about this statement.

1. According to example 1.7, the property saying that the group E [7](K) of 7-torsion K-rational points
of an elliptic curve is order 49 is a first order property. When K = C, a classical result of complex
elliptic curves says that (E(C),+) ' (C/(Z + τZ) for some τ with =(τ) > 0. In this case it is easy to
check that

E(C)[7] = { i
7

+ τ
i

7

∣∣ 0 ≤ i, j < 7, i, j ∈ N}

which has cardinality 49 indeed. So C |= Ψ. Applying proposition 1.8 we deduce that for any field K of
characteristic 0 which is algebraically closed, K |= Ψ. In other words, for any field K of characteristic
zero and E an elliptic curve defined over K,

∣∣E [7](K)
∣∣ = 49.

2. If E is an elliptic curve defined over K = F̄7 then |E [7]| = 1 or 7, so K 6|= Ψ. So we can not avoid the
assumption about the characteristic zero in proposition 1.8.

1.10 Remark. It is important to understand that not all properties of fields can be expressed by first order
formulas.

1. The property "K has transcendance degree at least 1 over Q" can not be expressed by a first order
formula. We would like to write it as

∃x ∀P ∈ Q[Q] P (x) 6= 0.

But quantifying over P ∈ Q[Q] is not allowed by our definitions. We can only quantify finitely many
variables in the field K whereas quantifying over P =

∑
i≥0 piX

i ∈ Q[X] requires to quantify over
the infinite set of variables {pi}i∈N. Using proposition 1.8 we can prove that this is not a first order
property: it holds on C but not on Q̄.

2. Let us consider the property for all smooth projective curve defined over K, there exists a regular
function f : X → P1

K such that f is unramified over {0, 1,∞}. This is not a first order property: a
result of arithmetic geometry (Belyi Theorem) asserts that up to isomorphism the only field satisfying
this property is Q̄.

2 The Uniform Tits Alternative is a first order property
Exercise. Prove that

UTA
(
Q(T1, T2, . . .)

)
⇒ UTA.

We are going to prove:

2.1 Proposition.
UTA

(
Q
)
⇒ UTA.

Proof. The idea is to use corollary 1.9. The problem is that the property UTA contains two quantifiers:

• A quantifier ∀d ∈ N and

• a quantifier ∀ finite sets S ⊂ GLd(K)
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which are not allowed in a first order formula.
Let us fix d ∈ N. According to UTA(Q), there exists N(d) satisfying the conditions of UTA(Q̄). Let us

consider the property:

Property. UTA(d,N(d)). If K is an algebraically closed field of characteristic 0, S ⊂ GLd(K) is a finite
symmetric set with 1 ∈ S, then

• either 〈S〉 is virtually solvable

• or SN(d) contains a generator of a free group with two generators: F2 ⊂ 〈S〉.

It suffices to prove UTA(d,N(d)). We have removed the ∀d ∈ N, but we still have the quantifier ∀ finite
S ⊂ GLd(K).

So let us fix an integer k and let us consider the property:

Property. UTA(d,N(d), k). If K is an algebraically closed field of characteristic 0, S = {A1, . . . , Ak} ⊂
GLd(K) is a finite symmetric set with 1 ∈ S, and with k elements, then

• either 〈S〉 is virtually solvable

• or SN(d) contains a generator of a free group with two generators: F2 ⊂ 〈S〉.

By assumption, the property UTA(d,N(d), k) holds for K = Q̄. So if we prove that UTA(d,N(d), k) is
a first order property (that is to say can be expressed by a first order formula), thanks to corollary 1.9, we
will also prove UTA(d,N(d), k).

Let us try to write a corresponding first order formula Φ for UTA(d,N(d), k):

Φ = ∀A1, A2, . . . , Ak ∈ GLd(K)
(
{A1, . . . , Ak} is symetric

)
⇒(

Γ := 〈A1, . . . , Ak〉 is virtually solvable
)∨(

{A1 . . . Ak}N contains two generators of some subgroup F2

)
.

Let us list three problems we face.
Problem 1. In Φ we quantify over matrices A ∈ GLd(K), and not over elements of the fieldK. But since

d is fixed, this is not a problem, because A is encoded by its n2 coefficients (Ai,j)1≤i,j≤n. That (Ai,j) defines
an element of GLd(K) and not simply a matrix of Md(K) can be expressed by the fact that det(Ai,j) 6= 0
which is a first order property. Note also that products and inverses of matrices are given by polynomials in
the coefficients Ai,j , so we will freely quantify over matrices, multiply them and inverse them.

Problem 2. Is the property

V S(A1, . . . , Ak) =
(

Γ := 〈A1, . . . , Ak〉 is virtually solvable
)

a first order formula? This is not obvious. This property is equivalent to:

∃c ∈ N ∃G ⊂ Γ := 〈A1, . . . , Ak〉
∣∣ (G is a solvable subgroup) ∧ ((Γ : G) ≤ c) .

The problem is that the two quantifiers ∃c ∈ N and ∃G ⊂ Γ are not allowed. Thanks to proposition 3.1, we
know that there exists an integer c := c(d) ∈ N (independent of K) such that for all subgroups Γ ⊂ GLd(K),
Γ is virtually solvable if and only if it has a subgroup of index less than c conjugated to a subgroup of the
subgroup of upper-triangular matrices that we denote by Td . So

V S(A1, . . . , Ak)⇔
(
∃P ∈ GLd(K) (Γ : (Γ ∩ PTd(K)P−1)) ≤ c

)
.

The last problem is that we need to calculate in terms of a first order formula the index (Γ : Γ∩PTd(K)P−1).
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For any integer k let us denote by [Sk] the set of left classes γ ·(Γ∩PTd(K)P−1) in Γ/(Γ∩(PTd(K)P−1))
for some γ ∈ Sk. An easy induction shows that if [Sk+1] = [Sk+1], for some integer k, then for any integer
j ≥ k, [Sj ] = [Sk]. Since S generates Γ, we deduce that for all j ≥ k

[Sj ] = Γ/(Γ ∩ (PTdP−1)).

It follows from this that

Γ/(Γ ∩ (PTd(K)P−1)) ≤ c⇔
[(

[Sc] = [Sc+1]
)
∧
(
|[Sc]| ≤ c

)]
.

Let us finally remark that testing if a matrix is in PTd(K)P−1 is a first order property: one has to check
that the d(d− 1) lower coefficients vanish. So the property expressing that

the subgroup 〈A1, . . . , Ak〉 ⊂ GLd(K) is virtually solvable

is equivalent to the first order formula

Ψ(A1, . . . , Ak) := ∃P ∈ GLd(K)
( ∧

1≤i1,...,ic+1≤k

( ∨
1≤j1,...,jc≤k

P−1Ai1Ai2 · · ·Aic+1
· (Aj1 · · ·Ajc)−1P ∈ Td(K)

)
∧ |[Sc]| ≤ c

)
.

Problem 3. It remains to prove that the following property is a first order property.

Property. P(B1 . . . BM ). There exist two elements A,B ∈ {B1 . . . BM}N such that 〈A,B〉 ' F2.

Exercise. For A,B ∈ GL2(K), let G(A,B) be the property that A,B generate a free group F2. Then G is
not a first order property. Let us sketch a proof of this fact.

1. Prove that there exist A,B ∈ GL2(R) which generate a free group. For instance one can remark
that π1(P1

C \ {0, 1,∞}) ' F2. The analytic universal covering of P1
C \ {0, 1,∞} is the Poincaré upper

half-plane H and the latter has automorphism group PSL2(R). This gives a subgroup F2 ≤ PSL2(R).

2. Deduce from this that (
a1,1 a1,2

a2,1 a2,2

)
, B =

(
b1,1 b1,2
b2,1 b2,2

)
generate a free group F2 in GL2(K) with K = Q(a1,1, a1,2, a2,1, a2,2, b1,1, b1,2, b2,1, b2,2).

3. Deduce from this that (
a1 0
0 a2

)
, B =

(
b1,1 b1,2
b2,1 b2,2

)
generate a free group F2 in GL2(K) with K = Q(a1, a2, b1,1, b1,2, b2,1, b2,2).

4. Deduce from this that (
a 0
0 1

)
, B =

(
b1,1 b1,2
b2,1 b2,2

)
generate a free group F2 in GL2(K) with K = Q(a, b1,1, b1,2, b2,1, b2,2).

5. If G(A,B) was a first order property, the set

C := {a ∈ C
∣∣ ∃B ∈ GL2(C), P(

(
a 0
0 1

)
, B)}

would be a dense constructible subset of C. To do this, use quantifier elimination for algebraically
closed fields, and the equivalence of first order property with constructible sets arising from it.
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6. Prove that there is an integer m such that e
2iπ
m ∈ C.

7. Obtain a contradiction by remarking that for any B ∈ GL2(C) the two matrices
(
e

2iπ
m 0
0 1

)
and B do

not generate a free group F2.

Given a word u ∈ F2 = F2(a, b), and given two matrices A,B ∈ GLd(K), we denote by u(A,B) the
matrix obtain by replacing a by A and b by B in u. For instance if u = aba−1, u(A,B) = ABA−1. The
property that A,B generate a free group is equivalent to the infinite conjunction∧

u∈F2\{1}

u(A,B) 6= 1GLd .

For an integer l let us set

Ψl(B1, . . . , BM ) :=
∨

1≤i<j≤M

( ∧
u∈F2\{1}, |u|≤l

u(Bi, Bj) 6= 1GLd

)
.

The formula Ψl(B1, . . . , BM ) expresses the fact that there exists a pair (Bi, Bj) such that for any nontrivial
word u of F2 of length less than l, u(Bi, Bj) 6= 1. It follows that P(B1, . . . , BM ) can be expressed by the
infinite conjunction ∧

l∈N
Ψl(B1, . . . , BM )

because then we can find a pair (Bi, Bj) winch satisfy
∧
u∈F2\{1}, |u|≤l u(Bi, Bj) 6= 1GLd for infinitely many

l. So for all u ∈ F2 \ {1} we will have that u(Bi, Bj) 6= 1GLd which proves that (Bi, Bj) generate some F2.
Remind that we had reduced UTA(d,N(d), k) to the statement

Φ = ∀A1, A2, . . . , Ak ∈ GLd(K)
(
{A1, . . . , Ak} is symetric

)
⇒(

Γ := 〈A1, . . . , Ak〉 is virtually solvable
)∨(

{A1 . . . Ak}N contains two generators of some F2

)
.

Setting M = kN it is equivalent to the property

∀A1, A2, . . . , Ak ∈ GLd(K)
(
{A1, . . . , Ak}is symetric

)
⇒(

Γ := 〈A1, . . . , Ak〉is virtually solvable
)∨(∧

l∈N
Ψl({A1 . . . Ak}N )

)
.

Distributivity properties of ∧,∨ and ⇒ imply that this is equivalent to the property∧
l∈N

Φl

where

Φl := ∀A1, A2, . . . , Ak ∈ GLd(K)
(
{A1, . . . , Ak}is symetric

)
⇒[(

Γ := 〈A1, . . . , Ak〉is virtually solvable
)∨(

Ψl({A1 . . . Ak}N )
)]
.

The latter Φl is now a first order formula. Since UTA(Q̄) holds, Q̄ |= Φl for all integer l, so according to
corollary 1.9, for any algebraically closed field K of characteristic 0 K |= Φl so K satisfies UTA(d,N(d), k).
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3 A Uniform bound for virtually solvable groups
We want to prove the following result which was used in the previous section.

3.1 Proposition. For each integer d, there exists an integer c(d) > 0 such that if K is a field of characteristic
0, for every subgroup G ⊆ GLd(K), G is virtually solvable if and only if there exists P ∈ GLd(K) such that(

G : (G ∩ (PTd(K)P−1))
)
≤ c(d).

Remark. Proposition 3.1 does not hold in positive characteristic. Indeed, any finite subgroup is virtually
solvable, so this would means that we could find an integer c such that for any integer n SL2(Fpn) contains
a solvable subgroup G of index less than c. The same should hold for PSL2(Fpn) which is simple for
Fpn 6= F2,F3. This contradicts the fact that |PSL2(Fpn)| −−−−→

n→∞
+∞ and that PSL2(Fpn) is a simple group

which is not commutative.

We will admit the following results.

3.2 Theorem (Jordan-Schur Theorem, see 36.13 [4]). For each integer n there exists a β(n) ∈ N such that
if K is a field of characteristic 0, and G a finite subgroup of GLn(K), then there exists a normal abelian
subgroup ACG such that (G : A) ≤ β(n).

3.3 Definition. The map
GLd(K) → Kd2

A 7→ (Ai,j)1≤i,j≤n
(1)

identifies GLd(K) with the Zariski open subset ofKd2 defined by det(Ai,j) 6= 0. This allows us to consider
GLd(K) as an algebraic variety.

1. A subgroup G ⊂ GLd(K) is called an algebraic group if it is a Zariski-closed subset of GLd(K).

2. If G ⊂ GLd(K) is a subgroup, we set

G :=
⋂
H⊂G

H is an algebraic group

H.

One can check that G is an algebraic group, and that it is the smallest algebraic group containing G.

3.4 Example. • The group of upper triangular matrices Td(K).

• The group of diagonal matrices Dd(K).

• The group of unipotent matrices Ud(K) =


1 ∗ ∗

0
. . . ∗

0 0 1


.

• If G ⊂ GLd(K) is an algebraic group, any conjugate PGP−1 is an algebraic group.

3.5 Lemma (1.2 [1]). Let G ⊂ GLd(K) be an algebraic group and let G0 be the Zariski connected component
of G containing 1 ∈ GLd(K). Then G0 is an algebraic group, G0 CG and (G : G0) <∞.

3.6 Lemma. If H ⊂ G is a subgroup then

(G : H) ≤ (G : H).

Proof. Let g1, . . . , gn be a set of representatives of G/H. Then ∪igiH is exactly the group generated by H
and the gi’s. Hence, it is Zariski closed and contains G. It follows that G = ∪igiH.
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Remark. Let H ⊂ G be a subgroup of finite index, then in general ( (G : H) < (G : H). For instance if
g = µp∞µp′ , and H = µp∞ .

3.7 Lemma (Corollary I.2.4 of [1]). If G ⊂ GLd(K) is a solvable group, then so is G.

3.8 Theorem (Lie-Kolchin theorem III.10.5 of [1]). Let G ⊂ GLd(K) be an algebraic group which is Zariski-
connected and solvable. Then there exists P ∈ GLd(K) such that

G ⊂ PTd(K)P−1. (2)

Let us start the proof of proposition 3.1, by induction on d. For d = 1, GL1(K) is abelian, so G is
solvable. Hence we can take c(1) = 1.

We fix an integer d > 1 and we assume that the above properties hold for all d′ < d. We start by an
important lemma.

3.9 Lemma. We can find a constant c′(d) such that for any G as above, if G stabilizes a non trivial subspace
{0} ( V ( Kd, then there exists P ∈ GLd(K) such that

(G : (G ∩ PTn(K)P−1)) ≤ c′(d).

Proof. Up to conjugation in GLd, we can assume that V = 〈e1, . . . ed1〉 where (ei)1≤i≤d is the standard basis
of Kd and d1 := dim(V ). So 1 ≤ d1 < d. Let us set d2 := d− d1. So

G ⊂
{(

A B
0 C

) ∣∣∣∣A ∈ GLd1(K), B ∈Md1,d2(K), C ∈ GLd2(K)

}
.

We now consider the group homomorphism

ϕ1 : G → GLd1(
A B
0 C

)
7→ A

and denote by F1 ⊂ GLd1 its image. By induction hypothesis, there exists P1 ∈ GLd1(K) such that(
PF1 : (F1 ∩ P1Td1(K)P−1

1 )
)
≤ c(d1). (3)

Similarly, we set
ϕ2 : G → GLd2(

A B
0 C

)
7→ C

with image F2 ⊂ GLd2 . By induction hypothesis, there exists P2 ∈ GLd2(K) such that(
F2 : (F2 ∩ P2Td2(K)P−1

2 )
)
≤ c(d2). (4)

We set
P :=

(
P1 0
0 P2

)
.

We obtain that (
G : (G ∩ PTd(K)P−1

)
≤ c(d1)c(d2).

So
c′(d) := sup

1≤d1<d
c(d1)c(d− d1)

works.
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Thanks to this lemma, we can assume that G acts irreducibly on Kd. Since G is virtually solvable, there
exists a solvable subgroup S ⊂ G of finite index. Thanks to lemma 3.6, (G : S) < +∞. It follows that S
is Zariski closed and open, hence G0 ⊆ S. Thanks to lemma 3.7, S is solvable, hence G0 is also solvable.
Thanks to theorem 3.8, there exists a P ∈ GLd(K) such that G0 ⊆ PTd(K)P−1. In particular,

(G : G ∩ PTd(K)P−1) ≤ (G : G ∩ PTd(K)P−1) ≤ (G : G0)

so we are reduced to bound (G : G0). Since G acts irreducibly, G also acts irreducibly on Kd. Up to
conjugation by P , we can assume that G0 ⊂ Td(K). If we intersect the natural exact sequence of groups

1→ Ud(K)→ Td(K)
Ψ−→ Dd(K)→ 1 (5)

with G0, we obtain an exact sequence
1→ U→ G0 → D→ 1 (6)

where U := Ud(K) ∩G0 and D := Ψ(G0).

Claim. UCG.

Proof of the claim. We already know that U C G0 C G. Let u ∈ U and g ∈ G. Then gug−1 ∈ G0 because
G0 C G. On the other hand, U is exactly the set of elements h ∈ G0 whose characteristic polynomial
is χh(X) = (X − 1)d. Since the characteristic polynomial is invariant under conjugation, it follows that
gug−1 ∈ U.

Claim. U = {1}.

Proof of the claim. Let us set
V := {v ∈ Kd

∣∣ u(v) = v, ∀u ∈ U}.

Then V is a vector subspace of Kd, which contains K · e1. If U 6= {1}, we have that V ( Kd. Then we claim
that G stabilizes V . Indeed if g ∈ G, v ∈ V , then for all u ∈ U we have

u(g(v)) = gg−1ug(v) = gu′(v) = g(v)

where u′ := g−1ug ∈ U because UCG. So g(v) ∈ V .
But this contradicts our assumption that G acts irreducibly on Kd.

Since we know that G0 CG, it follows that G ⊂ NGLd(K)(G0). Hence we get(
NGLd(K)(G0) : ZGLd(K)(G0)

)
≥
(
G ∩NGLd(K)(G0) : G ∩ ZGLd(K)(G0)

)
=
(
NG(G0) : ZG(G0)

)
=
(
G : ZG(G0)

)
.

Now a matrix computation leads that for any algebraic subgroup D ⊂ Dd(K) one has(
NGLd(K)(D) : ZGLd(K)(D)

)
≤ d!.

Hence, we can replace if necessary G by ZG(G0), that is to say, we can assume that

G0 ⊂ Z(G). (7)

Let us now distinguish three cases.
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• G0 * K∗ Idd Then we can find an element g0 ∈ G0 which is not an homothety. Let us write

g0 =

a1 0 0

0
. . . 0

0 0 ad


and let us set

V := {v ∈ Kd
∣∣ g0v = a1v}.

Then for any g ∈ G0 and for any v ∈ V ,

g0(gv) = gg0(v) = g(a1v) = a1(gv)

so gv ∈ V . So V is fixed by G0. On the other hand e1 ∈ V , and since we assumed that g0 is not a
homothety, V 6= Kd. But this contradicts the irreducibility of the action G y Kd.

• If G0 = {1}. Then G ' G/G0 which is finite. So G is finite. Thanks to theorem 3.2 there exists an
abelian subgroup A ⊂ G such that (G : A) ≤ β(d). In particular A is solvable.

• The remaining case would be that {1} ( G0 ⊂ K∗ Idd. Since G0 is Zariski connected, the only
possibility is that G0 = K∗ Idd. We have an exact sequence of groups

1→ G0 → G→ G/G0 → 1. (8)

whose right part is a finite group. If we intersect this short exact sequence with SLd(K) we obtain

1→ SLd(K) ∩G0 → G ∩ SLd(K)→ (G ∩ SLd(K))/(SLd(K) ∩G0)→ 1. (9)

The right hand side is still finite, and the left hand side is

SLd(K) ∩K∗ Idd(K) = µd Idd

is also finite. So G ∩ SLd(K) is finite. We claim that

(G ∩ SLd(K)) ·G0 = G.

Indeed, if g ∈ G, then there exists λ ∈ K∗ such that det(λ Id) = det(g), hence gλ−1 = h ∈ SLd(K).
So g = λ · h with λ Idd ∈ G0 and h ∈ H.

To conclude we apply theorem 3.2 to G ∩ SLd(K) which is finite. It contains an abelian subgroup
A ⊂ (G ∩ SLd(K)) with ((G ∩ SLd(K)) : A) ≤ β(d). So we get that

(G : G0A) = (G0H : G0A)

≤ (H : A)

≤ β(d).

Since G0 and A are abelian, and G0 ⊂ Z(G), it follows that G0A is abelian, hence solvable.
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