It suffices to prove the Uniform Tits alternative over \overline{Q}

Florent Martin

These are notes of a talk I gave for the lectures *Linear groups and heights* hold by Walter Gubler and Clara Löh in Regensburg during the winter term 2015-2016. The goal of the this talk is to explain in details the reduction of the Uniform Tits alternative from $\mathbb C$ to $\overline{\mathbb Q}$, the algebraic closure of $\mathbb Q$, following [\[3,](#page-11-0) § 3.1] and [\[2,](#page-10-0) § 9].

Contents

Introduction

We are interested in the following result.

Theorem (UTA: Uniform Tits alternative). For any $d \in \mathbb{N}$ there exists $N(d) \in \mathbb{N}$ such that if K is an algebraically closed field of characteristic 0, $S \subset GL_d(K)$ is a finite symmetric set with $1 \in S$, then

- either $\langle S \rangle$ is virtually solvable
- or $S^{N(d)}$ contains a generator of a free group with two generators: $F_2 \subset \langle S \rangle$.

Let us consider the following weaker statement.

Theorem (UTA($\overline{\mathbb{Q}}$)). For any $d \in \mathbb{N}$ there exists $N(d) \in \mathbb{N}$ such that if $S \subset GL_d(\overline{\mathbb{Q}})$ is a finite symmetric set with $1 \in S$, then

- either $\langle S \rangle$ is virtually solvable
- or $S^{N(d)}$ contains a generator a a free group with two generators: $F_2 \subset \langle S \rangle$.

The aim of this lecture is to prove

Proposition. [2.1](#page-3-1)

$$
UTA(\bar{\mathbb{Q}}) \Rightarrow UTA.
$$

There will be three main ingredients in the proof.

Proposition. [1.8](#page-2-0) Let Φ be a first order sentence. If K and K' any algebraically closed fields of characteristic 0

 $K \models \Phi$ if and only if $K' \models \Phi$.

Proposition. cf. Section [2.](#page-3-0) UTA can be expressed with first order sentences.

To prove this fact, we will need:

Proposition. [3.1](#page-7-1) For each integer d, there exists an integer $c(d) > 0$ such that if K is a field of characteristic 0, for every subgroup $G \subseteq GL_d(K)$, G is virtually solvable if and only if there exists $P \in GL_d(K)$ such that

$$
(G: (G \cap (P\mathbb{T}_d(K)P^{-1}))) \le c(d)
$$

where $\mathbb{T}_d(K)$ is the group of invertible upper triangular $d \times d$ matrices.

1 First order logic

We refer to [\[5,](#page-11-1) chapter 1] for this section. The goal of this section is to explain proposition [1.8.](#page-2-0) We fix a countable set of variables $V = \{a, a_1, a_2, \ldots, b, b_1, b_2, \ldots, z, z_1, z_2, \ldots, \}.$

1.1 Definition. An atomic formula Φ is an expression of the form

 $f_1 = f_2$

where $f_1, f_2 \in \mathbb{Z}[a, a_1, a_2, \ldots, b, b_1, b_2, \ldots, z, z_1, z_2, \ldots].$

1.2 Definition. The set of formulas is the smallest set $\mathcal F$ such that

- i) F contains the atomic formulas.
- ii) If $\Phi \in \mathcal{F}$, then $\neg \Phi \in \mathcal{F}$.
- iii) If $\Phi, \Psi \in \mathcal{F}$, then $\Phi \wedge \Psi, \Phi \vee \Psi, \Phi \Rightarrow \Psi$ and $\Phi \Leftrightarrow \Psi$ are in \mathcal{F} .
- iv) If $\Phi \in \mathcal{F}$ then for any variable $\omega \in \mathcal{V}$,
	- $\exists \omega \Phi$ is in F
	- $\forall \omega \Phi$ is in F.

We will write $f_1 \neq f_2$ in place of $\neg(f_1 = f_2)$. The notation $\forall \omega, \omega'$ (resp. $\exists \omega, \omega'$) will be used to denote $\forall \omega \ \forall \omega'$ (resp. $\exists \omega \ \exists \omega'$). We will use brackets in formula to avoid ambiguity.

1.3 Definition. If Φ is a formula and ω a variable, we say that ω is a free variable of Φ if ω occurs in Φ not in the scope of a quantifier $\exists \omega$ or $\forall \omega$. We say that ω is a bound variable if ω occurs in the scope of a quantifier $\exists \omega$ or $\forall \omega$. We say that Φ is a sentence if it has no free variables.

If Φ is a formula, we write $\Phi(\omega_1,\ldots,\omega_n)$ to express the fact that the set of free variables of Φ is contained in $\{\omega_1, \ldots, \omega_n\}.$

Remark. Let Φ be the formula $(x + y = 0) \wedge (\exists x \ x^2 = y)$. Then x is at the same time free and bound. We want to avoid this. However, we might replace Φ by the equivalent formula $(x_1 + y = 0) \wedge (\exists x_2 \ x_2^2 = y)$ where this problem disappears. We will tacitly restrict to such formulas, where a variable is not at the same time free and bound.

1.4 Example.

$$
\Phi_0(x) = \exists y(xy = 1) \n\Phi_1 = \forall x, y (x + y = y + x) \n\Phi_2(x) = \exists a (a^2 = x) \n\Phi_3 = \forall x \exists a (a^2 = x) \n\Phi_4 = \forall p \forall q ((4p^3 + 27q^2 \neq 0) \Rightarrow \exists x_1, x_2, x_3 (x_1^3 + px_1 + q = 0 \land x_2^3 + px_2 + q = 0 \land x_3^3 + px_3 + q = 0 \n\land x_1 \neq x_2 \land x_1 \neq x_3 \land x_2 \neq x_3).
$$

In Φ_1 , x, y are bound variables, in Φ_2 , a is bound and x is free, in Φ_3 , x, a are bound, in Φ_4 , p, q, x₁, x₂ are bound.

1.5 Definition. Let $\Phi(\omega_1, \ldots, \omega_n)$ be a formula whose free variables are contained in $\{\omega_1, \ldots, \omega_n\}$. Let K be a field and let $\underline{\lambda} = (\lambda_1, \ldots, \lambda_n) \in K^n$. We define

 $K \models \Phi(\lambda)$

(to be read the field K satisfies the formula Φ at $(\lambda_1, \ldots, \lambda_n)$) inductively on the formula Φ .

i) If Φ is the atomic formula $f_1 = f_2$ then $K \models \Phi(\underline{\lambda})$ if and only if the equality

$$
f_1(\underline{\lambda}) = f_2(\underline{\lambda})
$$

holds in K.

- ii) If $\Phi = \neg \Psi$ then $K \models \Phi(\lambda)$ if $K \models \Psi(\lambda)$ does not hold.
- iii) If Φ is equal to $\Psi_1 \wedge \Psi_2$ then $K \models \Phi(\underline{\lambda})$ if and only if $K \models \Psi_1(\underline{\lambda})$ and $K \models \Psi_2(\underline{\lambda})$. Similarly for ∨, ⇒, ⇔.
- iv) If Φ is the formula $\exists x \Psi(\omega_1, \ldots, \omega_n, x)$ then $K \models \Phi(\underline{\lambda})$ if and only if there exists an element $\alpha \in K$ such that $K \models \Psi(\underline{\lambda}, \alpha)$.
- v) If Φ is the formula $\forall x \Psi(\omega_1, \ldots, \omega_n, x)$ then $K \models \Phi(\lambda)$ if and only if for all elements $\alpha \in K$ it is true that $K \models \Psi(\underline{\lambda}, \alpha)$.

We write $K \not\models \varphi(\underline{\lambda})$ when $K \models \varphi(\underline{\lambda})$ does not hold.

- 1.6 Example. i) For any field K one has $K \models \Phi_1$. Indeed Φ_1 just says the additive law of K is commutative which is true in fields.
- ii) Given $\alpha \in K$, $K \models \Phi_2(\alpha)$ if and only if α is a square root in K. For instance $\mathbb{Q} \not\models \Phi_2(3)$, $\mathbb{R} \models \Phi_2(3)$, $\mathbb{R} \not\models \Phi_2(-1), \mathbb{C} \models \Phi_2(-1).$
- iii) One has $K \models \Phi_3$ if and only if all elements of K have a square root. For instance

(a)
$$
K \models \Phi_3
$$
 for

$$
K=\bar{\mathbb{Q}},\mathbb{C},\bigcup_{n\geq 1}\mathbb{F}_{p^{2^n}}\ldots
$$

(b) $K \not\models \Phi_3$ for

$$
K=\mathbb{Q},\mathbb{R},\mathbb{F}_{p^n},\mathbb{Q}_p,\mathbb{C}(T)\ldots
$$

iv) The formula Φ_4 expresses the property that any degree 3 polynomial P whose discriminant is nonzero has at least three distinct roots. One deduce from this that $K \models \Phi_4$ if and only if any degree 3 polynomial in K has a root. In particular all algebraically closed fields satisfy Φ_4 .

1.7 Example. The property Q "for any elliptic curve $\mathcal E$ defined over K, the group $\mathcal E[7](K)$ of 7-torsion Krational points has cardinality $49"$ is a first order property. First remind that given a, b in K such that $4a^3 + 27b^2 \neq 0$, one can associate an elliptic curve $\mathcal{E}_{a,b}$ defined by the equation in x, y

$$
y^2 = x^3 + ax + b.
$$

There is a group law defined on $\mathcal{E}_{a,b}(K) \cup \infty$ where ∞ is the point at infinity of $\mathcal{E}_{a,b}$, and this group law is defined by polynomials with coefficients in $\mathbb{Q}(a, b)$. It follows from this that there exists a first order formula $\Phi(a, b, x, y)$ such that for $\alpha, \beta, \gamma, \delta \in K$

$$
K \models \Phi(\alpha, \beta, \gamma, \delta)
$$

if and only if $\mathcal{E}_{\alpha,\beta}$ is an elliptic curve, and $(\gamma,\delta) \in \mathcal{E}_{\alpha,\beta}[7](K)$. Hence the property Q can be expressed by the formula

$$
\Psi = \forall a, b \Big(4a^3 + 27b^2 \neq 0 \Rightarrow \Big(\exists x_1, \dots, x_{48}, y_1, \dots, y_{48} \Big) \Big(\bigwedge_{i=1...48} \Phi(a, b, x_i, y_i) \land (\forall x, y \ \Phi(a, b, x, y) \Rightarrow \bigvee_{i=1...48} x = x_i \land y = y_i \Big) \Big) \Big)
$$

1.8 Proposition (3.2.2 [\[5\]](#page-11-1)). Let Φ be a first order sentence. Then if K and K' any algebraically closed fields of characteristic 0

$$
K \models \Phi \quad \text{if and only if} \quad K' \models \Phi.
$$

1.9 Corollary. Let Φ be a first order sentence. If $\overline{\mathbb{Q}} \models \Phi$, then for all algebraically closed field K of characteristic 0, one has $K \models \Phi$.

Let us make some remarks about this statement.

1. According to example [1.7,](#page-2-1) the property saying that the group $\mathcal{E}[7](K)$ of 7-torsion K-rational points of an elliptic curve is order 49 is a first order property. When $K = \mathbb{C}$, a classical result of complex elliptic curves says that $(\mathcal{E}(\mathbb{C}), +) \simeq (C/(\mathbb{Z} + \tau \mathbb{Z}))$ for some τ with $\Im(\tau) > 0$. In this case it is easy to check that

$$
\mathcal{E}(\mathbb{C})[7] = \{\frac{i}{7} + \tau \frac{i}{7} \mid 0 \le i, j < 7, i, j \in \mathbb{N}\}\
$$

which has cardinality 49 indeed. So $\mathbb{C} \models \Psi$. Applying proposition [1.8](#page-2-0) we deduce that for any field K of characteristic 0 which is algebraically closed, $K \models \Psi$. In other words, for any field K of characteristic zero and $\mathcal E$ an elliptic curve defined over $K, |\mathcal E[7](K)| = 49$.

2. If $\mathcal E$ is an elliptic curve defined over $K = \bar{\mathbb F}_7$ then $|\mathcal E[7]| = 1$ or 7, so $K \not\models \Psi$. So we can not avoid the assumption about the characteristic zero in proposition [1.8.](#page-2-0)

1.10 Remark. It is important to understand that not all properties of fields can be expressed by first order formulas.

1. The property "K has transcendance degree at least 1 over \mathbb{Q}^n can not be expressed by a first order formula. We would like to write it as

$$
\exists x \ \forall P \in \mathbb{Q}[Q] \ P(x) \neq 0.
$$

But quantifying over $P \in \mathbb{Q}[Q]$ is not allowed by our definitions. We can only quantify finitely many variables in the field K whereas quantifying over $P = \sum_{i>0} p_i X^i \in \mathbb{Q}[X]$ requires to quantify over the infinite set of variables $\{p_i\}_{i\in\mathbb{N}}$. Using proposition [1.8](#page-2-0) we can prove that this is not a first order property: it holds on $\mathbb C$ but not on $\mathbb Q$.

2. Let us consider the property for all smooth projective curve defined over K , there exists a regular function $f: X \to \mathbb{P}^1_K$ such that f is unramified over $\{0,1,\infty\}$. This is not a first order property: a result of arithmetic geometry (Belyi Theorem) asserts that up to isomorphism the only field satisfying this property is $\mathbb Q$.

2 The Uniform Tits Alternative is a first order property

Exercise. Prove that

$$
UTA\left(\overline{\mathbb{Q}(T_1,T_2,\ldots)}\right) \Rightarrow UTA.
$$

We are going to prove:

2.1 Proposition.

$$
UTA(\overline{\mathbb{Q}}) \Rightarrow UTA.
$$

Proof. The idea is to use corollary [1.9.](#page-3-2) The problem is that the property UTA contains two quantifiers:

- A quantifier $\forall d \in \mathbb{N}$ and
- a quantifier \forall finite sets $S \subset GL_d(K)$

which are not allowed in a first order formula.

Let us fix $d \in \mathbb{N}$. According to $UTA(\overline{\mathbb{Q}})$, there exists $N(d)$ satisfying the conditions of $UTA(\overline{\mathbb{Q}})$. Let us consider the property:

Property. UTA(d, N(d)). If K is an algebraically closed field of characteristic 0, $S \subset GL_d(K)$ is a finite symmetric set with $1 \in S$, then

- either $\langle S \rangle$ is virtually solvable
- or $S^{N(d)}$ contains a generator of a free group with two generators: $F_2 \subset \langle S \rangle$.

It suffices to prove $UTA(d, N(d))$. We have removed the ∀d ∈ N, but we still have the quantifier \forall finite $S \subset GL_d(K)$.

So let us fix an integer k and let us consider the property:

Property. UTA(d, N(d), k). If K is an algebraically closed field of characteristic $0, S = \{A_1, \ldots, A_k\}$ $GL_d(K)$ is a finite symmetric set with $1 \in S$, and with k elements, then

- either $\langle S \rangle$ is virtually solvable
- or $S^{N(d)}$ contains a generator of a free group with two generators: $F_2 \subset \langle S \rangle$.

By assumption, the property $UTA(d, N(d), k)$ holds for $K = \mathbb{Q}$. So if we prove that $UTA(d, N(d), k)$ is a first order property (that is to say can be expressed by a first order formula), thanks to corollary [1.9,](#page-3-2) we will also prove $UTA(d, N(d), k)$.

Let us try to write a corresponding first order formula Φ for $UTA(d, N(d), k)$:

$$
\Phi = \forall A_1, A_2, \dots, A_k \in GL_d(K) \left(\{A_1, \dots, A_k\} \text{ is symmetric} \right) \Rightarrow
$$
\n
$$
\left(\Gamma := \langle A_1, \dots, A_k \rangle \text{ is virtually solvable} \right) \bigvee \left(\{A_1 \dots A_k\}^N \text{ contains two generators of some subgroup } F_2 \right).
$$

Let us list three problems we face.

Problem 1. In Φ we quantify over matrices $A \in GL_d(K)$, and not over elements of the field K. But since d is fixed, this is not a problem, because A is encoded by its n^2 coefficients $(A_{i,j})_{1\leq i,j\leq n}$. That $(A_{i,j})$ defines an element of $GL_d(K)$ and not simply a matrix of $M_d(K)$ can be expressed by the fact that $det(A_{i,j}) \neq 0$ which is a first order property. Note also that products and inverses of matrices are given by polynomials in the coefficients $A_{i,j}$, so we will freely quantify over matrices, multiply them and inverse them.

Problem 2. Is the property

$$
VS(A_1,\ldots,A_k)=\Big(\Gamma:=\langle A_1,\ldots,A_k\rangle \text{ is virtually solvable}\Big)
$$

a first order formula? This is not obvious. This property is equivalent to:

 $\exists c \in \mathbb{N} \; \exists G \subset \Gamma := \langle A_1, \ldots, A_k \rangle \; \big| \; (G \text{ is a solvable subgroup}) \wedge ((\Gamma : G) \leq c).$

The problem is that the two quantifiers $\exists c \in \mathbb{N}$ and $\exists G \subset \Gamma$ are not allowed. Thanks to proposition [3.1,](#page-7-1) we know that there exists an integer $c := c(d) \in \mathbb{N}$ (independent of K) such that for all subgroups $\Gamma \subset GL_d(K)$, Γ is virtually solvable if and only if it has a subgroup of index less than c conjugated to a subgroup of the subgroup of upper-triangular matrices that we denote by \mathbb{T}_d . So

$$
VS(A_1,\ldots,A_k)\Leftrightarrow \Big(\exists P\in GL_d(K)\ \left(\Gamma: (\Gamma\cap P\mathbb{T}_d(K)P^{-1})\right)\leq c\Big).
$$

The last problem is that we need to calculate in terms of a first order formula the index $(\Gamma : \Gamma \cap P \mathbb{T}_d(K)P^{-1})$.

For any integer k let us denote by $[S^k]$ the set of left classes $\gamma \cdot (\Gamma \cap P \mathbb{T}_d(K) P^{-1})$ in $\Gamma/(\Gamma \cap (P \mathbb{T}_d(K) P^{-1}))$ for some $\gamma \in S^k$. An easy induction shows that if $[S^{k+1}] = [S^{k+1}]$, for some integer k, then for any integer $j \geq k$, $[S^j] = [S^k]$. Since S generates Γ , we deduce that for all $j \geq k$

$$
[S^j] = \Gamma / (\Gamma \cap (P \mathbb{T}_d P^{-1})).
$$

It follows from this that

$$
\Gamma/(\Gamma\cap (P\mathbb{T}_d(K)P^{-1}))\leq c \Leftrightarrow \left[\left([S^c]=[S^{c+1}]\right)\wedge \left(||S^c||\leq c\right)\right].
$$

Let us finally remark that testing if a matrix is in $P\mathbb{T}_d(K)P^{-1}$ is a first order property: one has to check that the $d(d-1)$ lower coefficients vanish. So the property expressing that

the subgroup $\langle A_1, \ldots, A_k \rangle \subset GL_d(K)$ is virtually solvable

is equivalent to the first order formula

$$
\Psi(A_1, ..., A_k) := \exists P \in GL_d(K) \ \Big(\bigwedge_{1 \leq i_1, ..., i_{c+1} \leq k} \Big(\bigvee_{1 \leq j_1, ..., j_c \leq k}
$$

$$
P^{-1} A_{i_1} A_{i_2} \cdots A_{i_{c+1}} \cdot (A_{j_1} \cdots A_{j_c})^{-1} P \in \mathbb{T}_d(K) \Big) \wedge |[S^c]| \leq c \Big).
$$

Problem 3. It remains to prove that the following property is a first order property.

Property. $\mathcal{P}(B_1 \dots B_M)$. There exist two elements $A, B \in \{B_1 \dots B_M\}^N$ such that $\langle A, B \rangle \simeq F_2$.

Exercise. For $A, B \in GL_2(K)$, let $\mathcal{G}(A, B)$ be the property that A, B generate a free group F_2 . Then \mathcal{G} is not a first order property. Let us sketch a proof of this fact.

- 1. Prove that there exist $A, B \in GL_2(\mathbb{R})$ which generate a free group. For instance one can remark that $\pi_1(\mathbb{P}^1_{\mathbb{C}}\setminus\{0,1,\infty\})\simeq F_2$. The analytic universal covering of $\mathbb{P}^1_{\mathbb{C}}\setminus\{0,1,\infty\}$ is the Poincaré upper half-plane $\mathbb H$ and the latter has automorphism group $PSL_2(\mathbb R)$. This gives a subgroup $F_2 \leq PSL_2(\mathbb R)$.
- 2. Deduce from this that

$$
\begin{pmatrix} a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2} \end{pmatrix}, B = \begin{pmatrix} b_{1,1} & b_{1,2} \\ b_{2,1} & b_{2,2} \end{pmatrix}
$$

generate a free group F_2 in $GL_2(K)$ with $K = \mathbb{Q}(a_{1,1}, a_{1,2}, a_{2,1}, a_{2,2}, b_{1,1}, b_{1,2}, b_{2,1}, b_{2,2}).$

3. Deduce from this that

$$
\begin{pmatrix} a_1 & 0 \\ 0 & a_2 \end{pmatrix}, B = \begin{pmatrix} b_{1,1} & b_{1,2} \\ b_{2,1} & b_{2,2} \end{pmatrix}
$$

generate a free group F_2 in $GL_2(K)$ with $K = \mathbb{Q}(a_1, a_2, b_{1,1}, b_{1,2}, b_{2,1}, b_{2,2}).$

4. Deduce from this that

$$
\begin{pmatrix} a & 0 \ 0 & 1 \end{pmatrix}, B = \begin{pmatrix} b_{1,1} & b_{1,2} \\ b_{2,1} & b_{2,2} \end{pmatrix}
$$

generate a free group F_2 in $GL_2(K)$ with $K = \mathbb{Q}(a, b_{1,1}, b_{1,2}, b_{2,1}, b_{2,2}).$

5. If $\mathcal{G}(A, B)$ was a first order property, the set

$$
C:=\{a\in\mathbb{C}~\big|~\exists B\in GL_2(\mathbb{C}),~\mathcal{P}(\begin{pmatrix}a&0\\0&1\end{pmatrix},B)\}
$$

would be a dense constructible subset of $\mathbb C$. To do this, use quantifier elimination for algebraically closed fields, and the equivalence of first order property with constructible sets arising from it.

- 6. Prove that there is an integer m such that $e^{\frac{2i\pi}{m}} \in C$.
- 7. Obtain a contradiction by remarking that for any $B \in GL_2(\mathbb{C})$ the two matrices $\begin{pmatrix} e^{\frac{2i\pi}{m}} & 0 \\ 0 & 1 \end{pmatrix}$ and B do not generate a free group F_2 .

Given a word $u \in F_2 = F_2(a, b)$, and given two matrices $A, B \in GL_d(K)$, we denote by $u(A, B)$ the matrix obtain by replacing a by A and b by B in u. For instance if $u = aba^{-1}$, $u(A, B) = ABA^{-1}$. The property that A, B generate a free group is equivalent to the infinite conjunction

$$
\bigwedge_{u \in F_2 \setminus \{1\}} u(A, B) \neq 1_{GL_d}.
$$

For an integer l let us set

$$
\Psi_l(B_1,\ldots,B_M) := \bigvee_{1 \leq i < j \leq M} \Big(\bigwedge_{u \in F_2 \setminus \{1\}, \ |u| \leq l} u(B_i,B_j) \neq 1_{GL_d} \Big).
$$

The formula $\Psi_l(B_1,\ldots,B_M)$ expresses the fact that there exists a pair (B_i,B_j) such that for any nontrivial word u of F_2 of length less than l, $u(B_i, B_j) \neq 1$. It follows that $\mathcal{P}(B_1, \ldots, B_M)$ can be expressed by the infinite conjunction

$$
\bigwedge_{l\in\mathbb{N}}\Psi_l(B_1,\ldots,B_M)
$$

because then we can find a pair (B_i, B_j) winch satisfy $\bigwedge_{u \in F_2 \setminus \{1\}, |u| \leq l} u(B_i, B_j) \neq 1_{GL_d}$ for infinitely many l. So for all $u \in F_2 \setminus \{1\}$ we will have that $u(B_i, B_j) \neq 1_{GL_d}$ which proves that (B_i, B_j) generate some F_2 .

Remind that we had reduced $UTA(d, N(d), k)$ to the statement

$$
\Phi = \forall A_1, A_2, \dots, A_k \in GL_d(K) \left(\{ A_1, \dots, A_k \} \text{ is symmetric} \right) \Rightarrow
$$
\n
$$
\left(\Gamma := \langle A_1, \dots, A_k \rangle \text{ is virtually solvable} \right) \bigvee \left(\{ A_1 \dots A_k \}^N \text{ contains two generators of some } F_2 \right).
$$

Setting $M = k^N$ it is equivalent to the property

$$
\forall A_1, A_2, \dots, A_k \in GL_d(K) \left(\{A_1, \dots, A_k\} \text{is symmetric} \right) \Rightarrow
$$

$$
\left(\Gamma := \langle A_1, \dots, A_k \rangle \text{is virtually solvable} \right) \bigvee \Big(\bigwedge_{l \in \mathbb{N}} \Psi_l(\{A_1 \dots A_k\}^N) \Big).
$$

Distributivity properties of \land , \lor and \Rightarrow imply that this is equivalent to the property

$$
\bigwedge_{l\in\mathbb{N}}\Phi_l
$$

where

$$
\Phi_l := \forall A_1, A_2, \dots, A_k \in GL_d(K) \left(\{ A_1, \dots, A_k \} \text{is symmetric} \right) \Rightarrow \left[\left(\Gamma := \langle A_1, \dots, A_k \rangle \text{is virtually solvable} \right) \bigvee \left(\Psi_l(\{ A_1 \dots A_k \}^N) \right) \right].
$$

The latter Φ_l is now a first order formula. Since $UTA(\bar{\mathbb{Q}})$ holds, $\bar{\mathbb{Q}} \models \Phi_l$ for all integer l, so according to corollary [1.9,](#page-3-2) for any algebraically closed field K of characteristic $0 K \models \Phi_l$ so K satisfies $UTA(d, N(d), k)$.

3 A Uniform bound for virtually solvable groups

We want to prove the following result which was used in the previous section.

3.1 Proposition. For each integer d, there exists an integer $c(d) > 0$ such that if K is a field of characteristic 0, for every subgroup $G \subseteq GL_d(K)$, G is virtually solvable if and only if there exists $P \in GL_d(K)$ such that

$$
(G: (G \cap (P\mathbb{T}_d(K)P^{-1}))) \le c(d).
$$

Remark. Proposition [3.1](#page-7-1) does not hold in positive characteristic. Indeed, any finite subgroup is virtually solvable, so this would means that we could find an integer c such that for any integer n $SL_2(\mathbb{F}_{nn})$ contains a solvable subgroup G of index less than c. The same should hold for $PSL_2(\mathbb{F}_{pn})$ which is simple for $\mathbb{F}_{pn} \neq \mathbb{F}_2, \mathbb{F}_3$. This contradicts the fact that $|PSL_2(\mathbb{F}_{p^n})| \xrightarrow[n \to \infty]{} +\infty$ and that $PSL_2(\mathbb{F}_{p^n})$ is a simple group which is not commutative.

We will admit the following results.

3.2 Theorem (Jordan-Schur Theorem, see 36.13 [\[4\]](#page-11-2)). For each integer n there exists $a \beta(n) \in \mathbb{N}$ such that if K is a field of characteristic 0, and G a finite subgroup of $GL_n(K)$, then there exists a normal abelian subgroup $A \triangleleft G$ such that $(G : A) \leq \beta(n)$.

3.3 Definition. The map

$$
\begin{array}{ccc}\nGL_d(K) & \to & K^{d^2} \\
A & \mapsto & (A_{i,j})_{1 \le i,j \le n}\n\end{array} \tag{1}
$$

identifies $GL_d(K)$ with the Zariski open subset of K^{d^2} defined by $\det(A_{i,j}) \neq 0$. This allows us to consider $GL_d(K)$ as an algebraic variety.

- 1. A subgroup $\mathbb{G} \subset GL_d(K)$ is called an algebraic group if it is a Zariski-closed subset of $GL_d(K)$.
- 2. If $G \subset GL_d(K)$ is a subgroup, we set

$$
\mathbb{G}:=\bigcap_{\substack{\mathbb{H}\subset G\\ \mathbb{H}\text{ is an algebraic group}}}\mathbb{H}.
$$

One can check that G is an algebraic group, and that it is the smallest algebraic group containing G.

 $\sqrt{2}$

3.4 Example. • The group of upper triangular matrices $\mathbb{T}_d(K)$.

• The group of diagonal matrices $\mathbb{D}_d(K)$.

• The group of unipotent matrices
$$
\mathbb{U}_d(K) = \left\{ \begin{pmatrix} 1 & * & * \\ 0 & \ddots & * \\ 0 & 0 & 1 \end{pmatrix} \right\}.
$$

• If $\mathbb{G} \subset GL_d(K)$ is an algebraic group, any conjugate $P \mathbb{G} P^{-1}$ is an algebraic group.

3.5 Lemma (1.2 [\[1\]](#page-10-1)). Let $\mathbb{G} \subset GL_d(K)$ be an algebraic group and let \mathbb{G}_0 be the Zariski connected component of G containing $1 \in GL_d(K)$. Then \mathbb{G}^0 is an algebraic group, $\mathbb{G}^0 \triangleleft \mathbb{G}$ and $(\mathbb{G} : \mathbb{G}^0) < \infty$.

3.6 Lemma. If $H \subset G$ is a subgroup then

$$
(\mathbb{G} : \mathbb{H}) \leq (G : H).
$$

Proof. Let g_1, \ldots, g_n be a set of representatives of G/H . Then $\cup_i g_i \mathbb{H}$ is exactly the group generated by \mathbb{H} and the g_i 's. Hence, it is Zariski closed and contains G. It follows that $\mathbb{G} = \cup_i g_i \mathbb{H}$. \Box

Remark. Let $H \subset G$ be a subgroup of finite index, then in general ($(G : \mathbb{H}) < (G : H)$). For instance if $g = \mu_{p_{\infty}} \mu_{p'}$, and $H = \mu_{p_{\infty}}$.

3.7 Lemma (Corollary I.2.4 of [\[1\]](#page-10-1)). If $G \subset GL_d(K)$ is a solvable group, then so is \mathbb{G} .

3.8 Theorem (Lie-Kolchin theorem III.10.5 of [\[1\]](#page-10-1)). Let $\mathbb{G} \subset GL_d(K)$ be an algebraic group which is Zariskiconnected and solvable. Then there exists $P \in GL_d(K)$ such that

$$
\mathbb{G} \subset P\mathbb{T}_d(K)P^{-1}.\tag{2}
$$

Let us start the proof of proposition [3.1,](#page-7-1) by induction on d. For $d = 1$, $GL_1(K)$ is abelian, so G is solvable. Hence we can take $c(1) = 1$.

We fix an integer $d > 1$ and we assume that the above properties hold for all $d' < d$. We start by an important lemma.

3.9 Lemma. We can find a constant $c'(d)$ such that for any G as above, if G stabilizes a non trivial subspace ${0} \subset V \subsetneq K^d$, then there exists $P \in GL_d(K)$ such that

$$
(G: (G \cap P\mathbb{T}_n(K)P^{-1})) \le c'(d).
$$

Proof. Up to conjugation in GL_d , we can assume that $V = \langle e_1, \ldots, e_{d_1} \rangle$ where $(e_i)_{1 \leq i \leq d}$ is the standard basis of K^d and $d_1 := \dim(V)$. So $1 \leq d_1 < d$. Let us set $d_2 := d - d_1$. So

$$
G \subset \left\{ \left(\begin{array}{c|c} A & B \\ \hline 0 & C \end{array} \right) \, \middle| \, A \in GL_{d_1}(K), \, B \in M_{d_1,d_2}(K), \, C \in GL_{d_2}(K) \right\}.
$$

We now consider the group homomorphism

$$
\begin{array}{cccc}\n\varphi_1: & G & \to & GL_{d_1} \\
\left(\begin{array}{c|c}\nA & B \\
\hline\n0 & C\n\end{array}\right) & \mapsto & A\n\end{array}
$$

and denote by $F_1 \subset GL_{d_1}$ its image. By induction hypothesis, there exists $P_1 \in GL_{d_1}(K)$ such that

$$
(PF_1: (F_1 \cap P_1 \mathbb{T}_{d_1}(K)P_1^{-1})) \le c(d_1). \tag{3}
$$

Similarly, we set

$$
\varphi_2: \begin{array}{ccc} G & \to & GL_{d_2} \\ \begin{pmatrix} A & B \\ 0 & C \end{pmatrix} & \mapsto & C \end{array}
$$

with image $F_2 \subset GL_{d_2}$. By induction hypothesis, there exists $P_2 \in GL_{d_2}(K)$ such that

$$
(F_2: (F_2 \cap P_2 \mathbb{T}_{d_2}(K) P_2^{-1})) \le c(d_2). \tag{4}
$$

We set

$$
P:=\left(\begin{array}{c|c} P_1 & 0 \\ \hline 0 & P_2 \end{array}\right).
$$

We obtain that

$$
(G: (G \cap P\mathbb{T}_d(K)P^{-1}) \le c(d_1)c(d_2).
$$

So

 $c'(d) := \sup$ $\sup_{1 \le d_1 < d} c(d_1)c(d - d_1)$

works.

 \Box

Thanks to this lemma, we can assume that G acts irreducibly on K^d . Since G is virtually solvable, there exists a solvable subgroup $S \subset G$ of finite index. Thanks to lemma [3.6,](#page-7-2) $(\mathbb{G} : \mathbb{S}) < +\infty$. It follows that S is Zariski closed and open, hence $\mathbb{G}^0 \subseteq \mathbb{S}$. Thanks to lemma [3.7,](#page-8-0) S is solvable, hence \mathbb{G}^0 is also solvable. Thanks to theorem [3.8,](#page-8-1) there exists a $P \in GL_d(K)$ such that $\mathbb{G}^0 \subseteq P\mathbb{T}_d(K)P^{-1}$. In particular,

$$
(G: G \cap P\mathbb{T}_d(K)P^{-1}) \leq (\mathbb{G}: \mathbb{G} \cap P\mathbb{T}_d(K)P^{-1}) \leq (\mathbb{G}: \mathbb{G}^0)
$$

so we are reduced to bound $(\mathbb{G}: \mathbb{G}^0)$. Since G acts irreducibly, G also acts irreducibly on K^d . Up to conjugation by P, we can assume that $\mathbb{G}^0 \subset \mathbb{T}_d(K)$. If we intersect the natural exact sequence of groups

$$
1 \to \mathbb{U}_d(K) \to \mathbb{T}_d(K) \xrightarrow{\Psi} \mathbb{D}_d(K) \to 1
$$
\n⁽⁵⁾

with \mathbb{G}^0 , we obtain an exact sequence

$$
1 \to \mathbb{U} \to \mathbb{G}^0 \to \mathbb{D} \to 1 \tag{6}
$$

where $\mathbb{U} := \mathbb{U}_d(K) \cap \mathbb{G}^0$ and $\mathbb{D} := \Psi(\mathbb{G}^0)$. Claim. $\mathbb{U} \triangleleft \mathbb{G}$.

Proof of the claim. We already know that $\mathbb{U} \triangleleft \mathbb{G}^0 \triangleleft \mathbb{G}$. Let $u \in \mathbb{U}$ and $g \in \mathbb{G}$. Then $gug^{-1} \in \mathbb{G}^0$ because $\mathbb{G}^0 \triangleleft \mathbb{G}$. On the other hand, U is exactly the set of elements $h \in \mathbb{G}^0$ whose characteristic polynomial is $\chi_h(X) = (X-1)^d$. Since the characteristic polynomial is invariant under conjugation, it follows that $gug^{-1} \in \mathbb{U}.$ \Box

Claim. $\mathbb{U} = \{1\}.$

Proof of the claim. Let us set

$$
V := \{ v \in K^d \mid u(v) = v, \ \forall u \in \mathbb{U} \}.
$$

Then V is a vector subspace of K^d , which contains $K \cdot e_1$. If $\mathbb{U} \neq \{1\}$, we have that $V \subsetneq K^d$. Then we claim that G stabilizes V. Indeed if $g \in \mathbb{G}$, $v \in V$, then for all $u \in \mathbb{U}$ we have

$$
u(g(v)) = gg^{-1}ug(v) = gu'(v) = g(v)
$$

where $u' := g^{-1}ug \in \mathbb{U}$ because $\mathbb{U} \lhd \mathbb{G}$. So $g(v) \in V$.

But this contradicts our assumption that G acts irreducibly on K^d .

Since we know that $\mathbb{G}^0 \lhd \mathbb{G}$, it follows that $\mathbb{G} \subset N_{GL_d(K)}(\mathbb{G}^0)$. Hence we get

$$
\begin{aligned} \left(N_{GL_d(K)}(\mathbb{G}^0): Z_{GL_d(K)}(\mathbb{G}^0)\right) &\geq \left(\mathbb{G} \cap N_{GL_d(K)}(\mathbb{G}^0): \mathbb{G} \cap Z_{GL_d(K)}(\mathbb{G}^0)\right) \\ &= \left(N_{\mathbb{G}}(\mathbb{G}^0): Z_{\mathbb{G}}(\mathbb{G}^0)\right) \\ &= \left(\mathbb{G}: Z_{\mathbb{G}}(\mathbb{G}^0)\right). \end{aligned}
$$

Now a matrix computation leads that for any algebraic subgroup $\mathbb{D} \subset \mathbb{D}_d(K)$ one has

$$
(N_{GL_d(K)}(\mathbb{D}):Z_{GL_d(K)}(\mathbb{D}))\leq d!.
$$

Hence, we can replace if necessary \mathbb{G} by $Z_{\mathbb{G}}(\mathbb{G}^0)$, that is to say, we can assume that

$$
\mathbb{G}^0 \subset Z(\mathbb{G}).\tag{7}
$$

 \Box

Let us now distinguish three cases.

• $\mathbb{G}^0 \nsubseteq K^*$ Id_d Then we can find an element $g_0 \in \mathbb{G}^0$ which is not an homothety. Let us write

$$
g_0 = \begin{pmatrix} a_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & a_d \end{pmatrix}
$$

and let us set

$$
V := \{ v \in K^d \mid g_0 v = a_1 v \}.
$$

Then for any $g \in \mathbb{G}^0$ and for any $v \in V$,

$$
g_0(gv) = gg_0(v) = g(a_1v) = a_1(gv)
$$

so $gv \in V$. So V is fixed by \mathbb{G}^0 . On the other hand $e_1 \in V$, and since we assumed that g_0 is not a homothety, $V \neq K^d$. But this contradicts the irreducibility of the action $\mathbb{G} \cap K^d$.

- If $\mathbb{G}^0 = \{1\}$. Then $\mathbb{G} \simeq \mathbb{G}/\mathbb{G}^0$ which is finite. So \mathbb{G} is finite. Thanks to theorem [3.2](#page-7-3) there exists an abelian subgroup $A \subset \mathbb{G}$ such that $(\mathbb{G} : A) \leq \beta(d)$. In particular A is solvable.
- The remaining case would be that $\{1\} \subsetneq \mathbb{G}^0 \subset K^* \mathrm{Id}_d$. Since \mathbb{G}^0 is Zariski connected, the only possibility is that $\mathbb{G}^0 = K^* \mathrm{Id}_d$. We have an exact sequence of groups

$$
1 \to \mathbb{G}^0 \to \mathbb{G} \to \mathbb{G}/\mathbb{G}^0 \to 1. \tag{8}
$$

whose right part is a finite group. If we intersect this short exact sequence with $SL_d(K)$ we obtain

$$
1 \to SL_d(K) \cap \mathbb{G}^0 \to \mathbb{G} \cap SL_d(K) \to (\mathbb{G} \cap SL_d(K))/(SL_d(K) \cap \mathbb{G}^0) \to 1. \tag{9}
$$

The right hand side is still finite, and the left hand side is

$$
SL_d(K) \cap K^* \operatorname{Id}_d(K) = \mu_d \operatorname{Id}_d
$$

is also finite. So $\mathbb{G} \cap SL_d(K)$ is finite. We claim that

$$
(\mathbb{G} \cap SL_d(K)) \cdot \mathbb{G}^0 = \mathbb{G}.
$$

Indeed, if $g \in \mathbb{G}$, then there exists $\lambda \in K^*$ such that $\det(\lambda \operatorname{Id}) = \det(g)$, hence $g\lambda^{-1} = h \in SL_d(K)$. So $g = \lambda \cdot h$ with $\lambda \mathrm{Id}_d \in \mathbb{G}^0$ and $h \in \mathbb{H}$.

To conclude we apply theorem [3.2](#page-7-3) to $\mathbb{G} \cap SL_d(K)$ which is finite. It contains an abelian subgroup $A \subset (\mathbb{G} \cap SL_d(K))$ with $((\mathbb{G} \cap SL_d(K)) : A) \leq \beta(d)$. So we get that

$$
(\mathbb{G} : \mathbb{G}^0 A) = (\mathbb{G}^0 \mathbb{H} : \mathbb{G}^0 A)
$$

\n
$$
\leq (\mathbb{H} : A)
$$

\n
$$
\leq \beta(d).
$$

Since \mathbb{G}^0 and A are abelian, and $\mathbb{G}^0 \subset Z(\mathbb{G})$, it follows that $\mathbb{G}^0 A$ is abelian, hence solvable.

References

- [1] Armand Borel. Linear algebraic groups, volume 126 of Graduate Texts in Mathematics. Springer-Verlag, New York, second edition, 1991.
- [2] Emmanuel Breuillard. Heights on SL_2 and free subgroups. In Geometry, rigidity, and group actions, Chicago Lectures in Math., pages 455–493. Univ. Chicago Press, Chicago, IL, 2011.
- [3] Emmanuel Breuillard. Diophantine geometry and uniform growth of finite and infinite groups. In Proceedings of the International Congress of Mathematicians. ICM Seoul, 2014.
- [4] Charles W. Curtis and Irving Reiner. Representation theory of finite groups and associative algebras. Pure and Applied Mathematics, Vol. XI. Interscience Publishers, a division of John Wiley & Sons, New York-London, 1962.
- [5] David Marker. Introduction to model theory. In *Model theory, algebra, and geometry, volume 39 of Math.* Sci. Res. Inst. Publ., pages 15–35. Cambridge Univ. Press, Cambridge, 2000.