
Complex semi-algebraic subsets are not stable
under projection

Quantifier elimination in field theories, is another way to say that definable
(or constructible, semi-algebraic) subsets are stable under projection, or say al-
gebraic maps.
This is true for constructible subset of Kn when K is an algebraically closed
field, and is known as Chevalley theorem in the geometric side [Har00][ex. II-
3.19] , and the fact that the theory of algebraically closed fields has quantifier
elimination in the model theoretic side [Mar00][3.2.2].
This is true in the framework of real algebraic geometry , and is known as Tarski
Theorem which states that semi-algebraic subsets are stable under projection[BCR98].
This is also true in the framework of algebraically closed valued fields [Rob77]
or [Duc03] for a more geometric approach.
It is then quite natural to wonder what happens for the field C equiped with
its absolute value |.|. We show that in this framework, complex semi-algebraic
subsets are not stable under projection.

Recall the following definition :

Definition 0.1. A subset V ⊆ Rn is called a semi-algebraic subset if V is a
finite boolean combination of subsets of the form {x ∈ Rn |f(x) > 0} where
f ∈ R[x1, . . . , xn] , and by finite boolean combination, we mean using finitely
many times the symbols ∩ , ∪ and c.

Definition 0.2. A subset V ⊆ Cn is called a complex semi-algebraic subset if V
is a finite boolean combination of subsets of the form {z ∈ Cn | |f(z)| < |g(z)|}
where f, g ∈ C[z1, . . . , zn] .

In these definitions, we could also allow subsets defined with ≤ and = , since
they can be obtained from > and the boolean operators c,∩.
If we identify Cn with R2n , one sees that a complex semi-algebraic subset of
Cn is a semi-algebraic subset of R2n. Lemma 0.1 and 0.2 will clarify in what
sence the converse is true or false.

Remark 1. Let V = {z ∈ Cn | |f(z)| = |g(z)|} . Then we are in one of the
three cases :
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1. f and g are constant, in which case V = Cn or is empty.

2. There exists a λ ∈ C∗ such that g = λf , in which case V is equal to Cn
if |λ| = 1 and is empty otherwise.

3. In the other cases V is a strict Zariski-closed subset of R2n (and in fact non
empty : after factorization of the polynomials, dividing by their common
factors, we can assume they have no common factor, and are not each
of them constant -oterwise we would be in case 2- then if one of them is
constant λ, since the otherwise is not, it vanishes, and tends to infinity,
so by mean value theorem reaches |λ| at some point, othermise they both
vanish at different points, and by the mean value theorem we conclude
again).

We’ll call the third case a strict equality , and since the two other cases
lead to trivial complex semi-algebraic subset , we’ll assume that all equality
appearing are strict equalities.

It is easily seen that a complex semi-algebraic subset can been writen as a
finite union of sets of the form :(

n⋂
i=1

{z ∈ Cn | |fi(z)| < |gi(z)|}

)⋂ m⋂
j=1

{z ∈ Cn | |Fj(z)| = |Gj(z)|}


with fi, gi, Fj , Gj ∈ C[z1, . . . , zn], and m (resp. n) being possibly zero, which
would mean that there would be only = (resp. <) . We’ll call such an intersec-
tion a basic complex semi-algebraic subset (the equalities here are assumed to
be strict).

Remark 2. In the definition of (real) semi-algebraic subset of Rn , if we replace
inequalities f > 0 by |g| > |h| (with g, h real polynomials) we get the same
definition.
Indeed in one hand |g| > |h| is equivalent to g2 − h2 > 0. One the other hand,
f > 0 is equivalent to |f + 1| > |f − 1|.

Lemma 0.1. Let V be a (real) semi-algebraic subset of Cn (we mean by that a
semi-algebraic subset of R2n). Then there exists m ∈ N , W a complex semi-
algebraic subset of Cm such that V = ϕ(W ) where ϕ is a complex polynomial
map ϕ : Cm → Cn.

Proof. Let us note that in C , R = {z ∈ C | |z − i| = |z + i|}. We then
take m = 2n , and writing the k-th complex coordinate of Cn zk = xk +
iyk , let us suppose that f(x1, . . . , xn, y1, . . . , yn) ) and g(x1, . . . yn) are two
polynomials (in 2n real variables) such that V = {(x1 + iy1, . . . xn + iyn) ∈
Cn | |f(x1, . . . , xn, y1, . . . , yn)| < |g(x1, . . . , yn)|}. We now consider C2n with
the complex coordinates X1, . . . , Xn, Y1, . . . , Yn. Then we define

W1 = {(X1, . . . , Xn, Y1, . . . , Yn) ∈ C2n | |Xk−i| = |Xk+i| and |Yk−i| = |Yk+i| , k = 1 . . . n}
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Then by the previous remarkW1 is the set of points of C2n with real coordinates.
Set W2 = {(X1, . . . , Yn) ∈ C2n | |f(X1, . . . , Yn)| < |g(X1, . . . , Yn)|} , and W =
W1 ∩W2. Finally let

ϕ : C2n → Cn
(X1, . . . , Xn, Y1, . . . , Yn) 7→ (X1 + iY1, . . . , Xn + iYn)

Then ϕ(W ) = V . Then using remark 2 and making use of finite boolean com-
bination makes it work.

Lemma 0.2. Let H = {x + iy ∈ C | y2 − (cos(1)x)2 = 1}. Then H is not a
complex semi-algebraic subset of C.

Proof. Otherwise let us write H = ∪k=1...NVk with the Vk basic complex semi-
algebraic subsets. One of the Vk , let us call it V , must contain inifinitely many
points of H. Write

V =

(
n⋂
i=1

{z ∈ C | |Fi(z)| < |Gi(z)|}

)⋂ m⋂
j=1

{z ∈ C | |fj(z)| = |gj(z)|}


V can’t be open, since it is contained in H whose interior is empty, so in the
expression of V there is indeed an equality |f(z)| = |g(z)| (i.e. m ≥ 1) ,
which defines a stric Zariski-closed subset of C ' R2. If we call W = {z ∈
C | |f(z)| = |g(z)|}, by assumption, W is a strict (real) Zariski-closed subset
of C which contains infinitely many points of H , so H ⊆ W (because H is
irreducible). Since f

g is not constant , it has an assymptotic taylor serie of the

form f(z)
g(z) = 1 + α

zp + ◦( 1
|zp| ) with α 6= 0 and p > 0, and by assumption, for

all z ∈ H where g doesn’t vanish , | f(z)g(z) |
2 = 1. When passing to the absolute

value , the asymptotic serie gives us for z ∈ H, 1 + 2<(αz−p) + ◦(|z|−p) = 1,
i.e. <(αz−p) = ◦(|z|−p).
Now, H has an horizontal asymptotic branch D1 = {x ≥, y = 0} , and D2 =
{x ≥ 0, y = cos(1)x}. When |z| → ∞ , on D1 , z ∼ |z| , and on D2 , z ∼ ei|z|.
On these two branches, the taylor serie we found implies that :
<(α|z|−p) = |z|−p<(α) = ◦(|z|−p)
and <(α(ei|z|)−p) = |z|−p<(αe−ip) = ◦(|z|−p). This implies <(α) = <(αe−ip) =
0 wich is impossible (since π is irrational).

Corollary 0.1. Complex semi-algebraic subsets are not stable under projection.

Proof. Indeed , otherwise, according to lemma 0.1 , the (real) semi-algebraic
subset of Cn would be complex semi-algebraic, but the hyperbola H gives an
ecounter-example.

Proposition 0.1. Let f, g ∈ C[x] , such that R ⊆ {|f | = |g|}. Then up to
multiplication by a scalar, f(x) =

∏
k=1...n(x− ak) and g(x) =

∏
k=1...n(x− bk)

where ∀k , bk ∈ {ak, ak}

3



Proof. ∀x ∈ R , |f(x)|2 = |g(x)|2 , but this is now an equality of two real
polynomials , which factorize on R[X] as the product of the (x − ak)(x − ak)
(resp. (x− bk)(x− bk) ), we then conclude by factoriality of R[x].
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