Ecole Normale Supérieure de Cachan
Master Parisien de Recherche en Informatique (MPRI)

Channel machines

Florent Martin

Encadré par James Worrell
Oxford University (Oxford Computing Lab)
Stage du 29 Mai au 10 Aott 2007

Dans une premiére partie, en frangais, je présenterai les grandes orientations
qui ont guidées mon stage, sans entrer dans les détails techniques. Dans la
deuxiéme partie, redigée en anglais, on peut trouver les définitions (en particulier
en ce qui concerne la fair-terminaison qui constitue le point de départ de mon
stage), et les résultats que j’ai obtenus en collaboration avec James Worrell.

1 Le sujet

J’ai effectue mon stage a Oxford sous la direction de James Worrell. Le sujet
qu’il m’a proposé consistait d’abord & étudier une certaine classe de machines
a canaux (avec renommage) avec insertion, plus precisément le probléme de la
fair-terminaison. Dans un deuxiéme temps, je me suis concentré sur 1’ étude du
méme probléme en supprimant la primitive de renommage. Dans tous les cas,
je ne me suis intérressé qu’a des machines avec un unique canal.

Les machines & canaux ont étés introduites il y a plusieurs années, et représen-
tent une modélisation pertinante d’une exécution paralléle. Cependant, les ma-
chines a canaux sont de maniére non surprenantes Turing-compléte. De maniere
surprenante en revanche, en autorisant des insertions (ou des suppressions), le
modele devient en grande partie analysable.

Pour faire cours, une machine & un canal est la donnée d'un automate fini tel
que chaque transition d’un état & un autre est étiquetée par une action

la qui signifie que ’on doit ajouter un a a la queue du canal

ou 7a qui signifie que 'on doit lire (c’est & dire supprimer) un a a la téte du
canal.

Une configuration est donc la donnée d’un état courant de 'automate, et la
donnée du contenu du canal, c’est & dire d’une file. La primitive de I'insertion
rend possible d’ajouter & tout moment et & n'importe quel endroit du canal et
sans limite, des symboles.

Dans [FS01], des résultats généraux concernants ces deux modeéles(avec insertion
ou suppression) sont donnés, dans un cadre général qui met bien en perspective
le réle joué par le fait de pouvoir insérer (ou supprimer) des symboles. Le prob-
léme de l'accessibilte (étant donné deux configurations, existe-t-il un chemin qui
méne de 'une a autre) qui est décidable, s’avére en fait avoir une complexité
non primitive-récursive [Sch02]. Certaines idées présentes dans cet article (en
particulier en ce qui concerne les simulations) se retrouvent dans la preuve de
PSPACE-complétude plus-bas.

A la suite de I'article [OW06], mon superviseur, avait en fait pu ramener le prob-
léme de la satisfaisabilité de safety-MTL au probléme de la fair-terminaison pour
les machines a canaux avec insertion. Avec [OWO05] et [BMOWO7] cela établit
donc un nouveau lien entre les machines & canaux & insertion et la logique MTL.
Le probléme de la terminaison pour les machines & insertion ne présente en fait
aucun intérét, car il ne fait que mettre en lumiére ’existence ou non d’un chemin
infini dans la graphe de "automate. En particulier, la réponse a la question ne
dépend que de I’état de la configuration, et non de son contenu. Presenté rapi-
dement, une execution infinie sera dite fair si tous les symboles qui sont ajoutés
au canal sont ultérieurement lus.

2 Le déroulement du stage

Apres une premiére période de lecture et de familiarisation avec le sujet, j’ai
pu m’atteler au probléme de la fair-terminaison des machines & insertion avec
renommage. La solution du probléme n’était en fait pas tres eloignée. Comme
me l’avait présenté mon superviseur, en utilisant le lemme de Higman, ’ensemble
des configurations qui ne sont pas terminantes peut se caractériser comme le
plus grand point fixe d’une certaine fonction @, et le lemme de Highman per-
mettait d’assurer que ce plus grand point fixe pouvait étre obtenu en effectuant
un nombre fini d’itérations de ®. La double contrainte du renommage et d’une
execution fair et infinie, rendait la fonction ® complexe, et le principal probléme
a été de prouver que cette fonction était calculabe en un certains sens. Cepen-
dant, en utilisant des techniques d’automate fini, on a pu montrer comment
étant donné un langage régulier £ calculer ®(L£). Cela nous a donc permis de
conclure que le probléme était décidable.

La suite logique de ce probléme consistait & s’intéresser a la complexite du prob-
léme de la fair-termination. La primitive du renommage etant en quelque sorte
moins naturelle que le probléme (moins general) de la fair-terminaison pour les
machines a insertion “standard”, c’est & ce dernier que je me suis attelé. Le prob-
léme de la fair-terminaison pour une machine & un canal avec insertion étant un
cas particulier de la fair-terminaison pour une machine & canal avec insertion et
avec renommage, le résultat de décidabilité présenté ci-dessus se transportait na-
turellement. Notre preuve reposait inéluctablement sur le lemme de Higman, et
comme déja mentionné, le résultat de [Sch02] tend a faire croire que, sans autre
outil extérieur, il est impossible de prouver une complexite récursive-primitive.
Malgré ce résultat quasi rédibitoire, et le sceptissisme de mon superviseur qui
m’encourageait malgré tout a suivre mon instinct, je me suis intéressé pour un
temps au lemme de Higman du point de vue de la complexité, c’est a dire &
considérer quelle était la taille maximale d’une séquence de mots qui ne con-
tredisaient pas le lemme de Higman, en supposant la taille des mots controlée.
J’en arrivais finalement & la conclusion la plus naturelle, bien que ce ne soit pas
celle que j’attendais, & savoir que cette taille n’est pas récursive-primitive.
Puis j’ai consacré le reste de mon stage a étudier le probléme de la fair ter-
minaison pour les machines & insertion & un canal. Le résultat obtenu est
alors que le probleme la terminaison est PSPACE-complet pour un alphabet de
trois lettres ou plus, et NP-complet dans le cas d’un alphabet de deux lettres.
Dans tous les cas, 'idée directrice est d'introduire ce que j’ai appelé des bonnes
composantes connexes de 'automate associé a notre machine 4 un canal. Une
bonne composante connexe d’une machine & canal est une composante connexe
de ’automate qui est tel que tout symbole a qui est ecrit dans cette composante
(i.e. pour toute transition de la forme !a) on doit pouvoir lire ce méme sym-
bole dans cette composante (i.e. il doit y avoir une transition étiquetée par
?a). 1l est alors facile de voir qu’une configuration qui est dans un état d’une
telle bonne composante, avec un canal composé uniquement des “bonnes” lettres
que la composante pourra lire, est une configuration d’ ou il sera possible de
faire une execution infinie et fair (en restant précisemment dans cette bonne
composante). Réciproquement, si on considére une execution infinie, on peut
définir la composante connexe qui sera visitée infiniement souvent. Il s’agit
aussi d’une bonne composante connexe. A partir de 14, I'idée consiste a dire
que si on effectue un certains nombres de cycles au cours d’une execution, on a

nécessairement du passer dans une bonne composante connexe, avec une bonne
configuration.

Une nouvelle question qui surgissait alors était de considérer le probléme de la
terminaison, en ajoutant en plus des contraintes sue chaque états. Précisément,
I’idée consiste & associer a chaque états de Yautomate un ensemble de mots clos
par C, et d’éxiger que pour qu’'une execution soit considérée correcte, elle doit
a chaque fois verifier la contrainte associée avec chaque état. Il s’agit d’une
extension des machines & canaux avec test d’occurence.Or ce probline a déja été
identifié comme un probléme nécessitant une tour linéaire d’exponnentiel. Mon
sentiment était et est toujours que ce résultat doit en fait pouvoir s’étendre au
cas des contraintes ensemblistes. Malheureusement, aucune piste réelle sur le
chemin de la solution ne s’est pas présentée.

3 Introduction

3.0.1 The general framework

Channel machines is a quite natural framework that allows to describe infinite
transition systems. Not surprisingly though, this model is equivalent to the
model of the Turing machines, and all non-trivial problem are there undecid-
able. More surprisingly, if we allow in the model insertion (or deletion), the
transition system ranges in the category of the weel-structured transition sys-
tems described in [FS01] and most of the probleme become then decidable (in
particular reachability, and non termination for the lossy channel machines).
These general decidability results hold on Higman’s Lemma. Petri Net is an-
other exemple of infinite system which general decidabilty results, which also
can enter in the framework of [FS01], using this time Dickson’s lemma instead
of Higman’s Lemma. In both, this is the property of well-quasi order sets which
is the key point.

We are here going to focus on insertion channel machine with only one channel,
and introduce for it the notion of an infinte fair computation (in fact, the “clas-
sical” notion of non termination for an insertion channel machine is irrelevant).
We'll first obtain a decidability result with the primitive of renaming. But our
main contribution is to prove that the set of configuration that are non (fairly)
terminating is a regular-set (actually a down-set for the order C) that can be
calculated in PSPACE, and that the membership problem is NP-complete for an
alphabet of two letters, and PsPACE-complete for an alphabet of three letters
(and remains in PSPACE if the length of the alphabet is bigger).

4 CAROTS

4.1 the subwordorderer and Higman’s Lemma

Definition 1 For two words u,v € ¥* we write u C w if w can be obtained by u
in adding some letters. Formally, if u = uy...u,, where the u; are some letters of
Y., then there exist some words wy, . .., w, such that v = wy.u1.W1.U... Uy . Wy, .

C is then an order on *, which is obviously non total, and has the remarkable
property to be a well-quasi order set :

Proposition 1 (Higman’s Lemma) Let (w;);en be a sequence of elements of
¥, then there exists i < j such that w; T wj.

Definition 2 A subset L of ¥* will be called an upper set, if for every w € L
and for every v such that w C v then we have v € L. Dually, L we’ll be said
to be a down, or a lower set if for every w € L and for every v C w we have
ve L.

The simplest example of upper sets that come to mind are sets that we

would be tempted to call principal upper sets : 1 w def {u e ¥ | wC u}
where w is then a word of ¥*. More generally, any finite union of principal
upper sets is again an upper set. A direct consequence of Higman’s Lemma is
that every upper set L is in fact a finite union of principal upper sets. In that
case, if L = Ui:l,...,n T w; we'll say that the set {wy,...,w,} forms a basis of
L. Conversely since the complement, of every down set is an upper set, we can
finitely describe a down set by giving a finite basis of its complement, such a
basis will be called a cobasis.

Here is another consequence of Higman’s Lemma

Proposition 2 Any increasing sequence of upper sets L1 C Lo C ... C L; C ...
must be stationary, and then dually, any decreasing sequence of lower set is also
stationary.

4.2 Definitions

Definition 3 A Channel Automaton with Renaming and Occurrence Testing
(CAROT) is a tuple C = (S, s, 2, A, F), where S is a finite set of control states,
so € S is the initial control state, F C S is a set of accepting control states, X
is a finite channel alphabet and A C S x Op x S is the set of transition rules,
with Op = {o!,07 | 0 € ¥} U{zero(o) | c € X} U{R| R C ¥ x 3.} the set of
operations. Given a rule 7 € A, we denote the corresponding operation op(T).
Intuitively, zero(o) € Op guards against the occurrence of o in the channel, and
R € Op is interpreted as a global renaming (where renaming to € corresponds
to deletion,).

A global state or configuration of C is a pair v = (s,z), where s € S is the
control state and x € ¥* is the channel contents. Define Conf to be set of all
configurations of C. The rules in A induce a transition relation on the set of
global states according to the following table, where, given x = z; ..., € X*

and R C ¥ x X, R(x) dﬁf{ylu-y"eZ*:xiRyi}.

Rule Transition
(s,olt) (s,z) = (t,x - 0)
(s,07,t) (s,0-2) = (t,x)

(s, zero(o),t) (s,z) = (t,x),ifoc g
(s, R,t) (s,z) = (t,y), if y € R(x)

A computation of C is a (finite or infinite) sequence of transitions yo — y1 —
Yo =+ -+ with 79 = (s, €). In fact, a zero-testing zero(o) can be simulated by
the relation R,= {(z,x) | = € ¥ and « # o} . Indeed, u R, v if and only if

zero(o)
) ——(

u=wv and o € u. Hence, (s,u t,v) if and only if (s, u) LN (t,v) , and

then, if one replace all the transitions s M t by a new one, s Hoy g , one

can effectively simulate a general CAROT by a channel automaton with only,
read, write, and renaming operations. Now, associate some relations to every
transition of C

op(t) || ol,0? R
R, Id | RU{e,e}

And we define the submonoid of the relations over ¥ generated by these relations
Re. In fact, as previously said, even without the primitive of the renaming, a
channel machine is Turing-Powerfull, but two variants have already been studied
: Lossy channels Machines, and Insertion Channel machines, for which some
classical problems are decidable. We are going to focus, and hence explain
the second model. In the insertion model, one allows transition of the form
(s,u) — (t,v) provided that there exist v’ and v’ such that w C v’ and ' C v
and that (s,u’) — (¢,v’) in the model previously defined. Until the end, we are
in fact going to work on an intermediate model : the lazy model. The restriction
we are going to make is that one will be allowed to add a letter on the tape
only if this letter is added on the head of the tape and is consumed by the
next transition. Hence one could also define the semantic of the lazy model of a
Channel machine with renaming as the perfect one, except that every transition

of the form s ~% t can be taken, without any consequence on the tape.

Definition 4 An infinite fair computation of C , is an infinite computation
(s0, o) — (s1,21) — ... such that every symbol that is written on the tape is
eventually erased from the tape. Define then

INF ={(s,x) | there exists an infinite fair computation starting at (s,z)}

Our aim is to show that the set INF is regular and computable.

4.3 The fixed-point characterization

We are now going to divide the possible transitions (s,u) — (¢,v) in two cate-
gories

e The progressive transitions where the symbol at the head of the tape has
really been read. That is to say, whether a read transition s 2% t where

we are considering a perfect transition, whether a transition (s, u) EiN (t,v)
where (0, ¢) €R and a o has effectively been deleted.

e We call conservative transitions every transitions that are not some pro-
gressive transitions of the form s 2o, t, that is to say , all the transitions

of the form s % ¢ , S By tor s 2% t where this last transition was token
in the lazy model.

It is then clear that given an infinite computation (sg,z¢) — (s1,21) — ... ,
this is an infinite fair computation, if and only if it contains indefinitely many
progressive transitions. And hence,

Proposition 3 Given a Channel Machine with renaming C and a configura-
tion (s,u), there is an infinite fair computation starting at (s,u), that’s to say
(s,u) € INF if and only if there is an infinite computation starting at (s,u)
with indefinitely many progressive transitions

Definition 5 Let (s,u) be a configuration of a Renaming channel machine C

define

(s,x)s.t. there exists a computation

(s,2) =70 = t171 = to... = tpyn = (L,0)

with n > 1, and t; is a conservative transition for i <n
and a progressive transition for i = n.

Pred, (t,v) =

Pred can be extended to a monotonous function of (Conf, C) on itself, and
then has a greatest fixed-point. It’s convenient to represent a set of configura-
tions £ as the union of sets of configurations in the same state, i.e. to consider
that £ = ggﬁs . Then we will abusively confuse the set of configurations L

S

with the language £, = {r € ¥* | (s,u) € L} What we mean then by a lower

set (resp. a regular set) of configuration L , is a set of configuration £ = USL’S,
se

where every Ly is a lower set (resp. a regular set).

Proposition 4 INF is a lower-set and the greatest fized-point of Pred,
Proof :First, if (s,u) € INF then one can find an infinite fair computation
(s,u) = (s0,u0) = (s1,u1) — ... (1)

Now, if v E (s,u) , that is to say, if v = (s,v) with v C u then there exists an
infinite computation

(s,v) = (s0,v0) = (s1,v1) — ... (2)

where the s}s are really the same than in the computation (1). This is possible
because if z C y and (s,y) — (¢,y’) , then in the lazy model, there’s also a
computation (s,z) — (¢,2’) with 2’ C 3’ .Hence one can show (2) by induction.
Now, since (1) is a fair computation, there exists a step n such that at that
moment all the letters that were initially in the tape have been consumed, that
is to say, all the letters of u have been read or deleted. Then all the letters

that appear on the u; for i > n have been added to the tape by some ¢ lo, q
transitions. And then after this n —th step, one can assume that the simulation
in (2) is perfect, i.e. Vi > n v; = u;. And hence (2) is also an infinite fair
computation.

Let’s show now that Pred (INF) = INF. First, if (t,v) € INF then if
(s,u) € Pred;(INF) there exists a computation

(s,u) By (t,u)

Since there is an infinite fair computation starting at (¢,u), there’s also an
infinite fair computation starting at (s,u), and then Pred,(INF) C INF.
Conversely, if (s,u) € INF then there exists an infinite fair computation

¢ ¢
(5,u) =70 = 7 271 595 2 v

where all the t; are some progressive transition and ~; — Yiy1 is asequence of
conservative transitions. Then, (s,u) € Pred (1) and it’s clear that 4, € INF.
Then (s,u) € Predy(INF) and finally INF = Pred,(INF). Now if F is a
fixed-point of Pred,, then let (s,u) € F. One can then construct inductively
an infinite fair computation

(s,u) =70 > m 5 0.0

with 7; € F' ¥ i. All you have to do is to define 7,41 as an antecedent of 7; for
Predy in F. O

Our goal is to compute the set /N F.Then, we would like to be able to
say that the decreasing sequence Pred!} (Conf) eventually stabilizes and then,
this would produce the greatest fixed-point of Pred,, INF. But this sequence
might not stabilize. Hence we are going to define another function, very close
to Pred

Definition 6 For X C Conf define
O(X)=Conf\ 1 (Conf\Predy (X))
Equivalently, ®(X) is the least lower set contained in Pred,.

® is also a monotonous, and moreover, VX € Conf ®(X) is a lower set.
Hence ®"(Conf) is a decreasing sequence of lower and then must stabilize.
Moreover, if one write GFP for Greatest fixed point :

Proposition 5 GFP ® = GFP Predy

Proof : First
O(GFPPredy) = Conf\ 1 (Conf\Predy(GFPPredy))

= Conf\ 1 (Conf\GFPPred.)
= GFPPredy since INF = GFPPred; is downward-closed

GFPPredy is then a fixed-point of ®. Moreover,since VX € Conf ®(X) C
Pred,(X) if F is a fixed-point of ® | then F' C Pred;(F) and then F C
GFPPredy. It’s then true that GF'P(®) = GFP(Pred,). O

Since we now know that the increasing sequence ®"(Con f) will stabilize at
some point, we only need to be able to compute this sequence. By definition of
® | whatever the set X 1is, ®(X) is a lower set. A consequence of Higman’s
lemma is that an upper set X is in fact the open closure of a finite set; we call
such finite sets basis of X, hence, every lower set is also regular, and can then
be presented, as a regular (with an automaton for instance), or with a co-basis,
that’s to say by a basis of the upper set consisting of the complement of X. Our
aim, is now to show that given a lower set I, presented in one of this way, we
are able to compute a presentation of Predy([), and hence a presentation of
O(1).

Definition 7 If X is a state of configuration, define

Predyroq(X) = {y € Conf | there is a progressive transitiony —~' , v € X}

and
Predeons(X) = {v € Conf | there is a conservative transitiony —~' , v € X}
Then for X € Conf, the following holds :

Predy(X) = Pred,

cons

o Predprog(X)

Proposition 6 Given a regular language L , then Predy,o,(L) is a regular
language that can effectively be calculated.

Proof : Write L= U L.
ses

For every s € S if we have in C the transition

70
a t—s

define then, abusively L$ = (t,Ls.{c}).

An the other hand, if we have a transition o« : ¢ By ¢ then if we define
¥ = {6 € ¥ | ¢ R ¢} then define L= (t, R™' (L,).2® which can then be
empty, if £F is empty, i.e. if R induces no deletion.

Then Predy,oq(Ls) = U LY.

a= s—t
Proposition 7 (s,x) € Pred,,(t,y) i.e there exists a computation (s, x) cons”,
(t,y) , if and only if 3 2’ and z € ¥* and RERc s.t. y=2a'.z and x R 2’
and there exists a (maybe empty) computation

(5,€) = (50,20) =5 (51,21) —2 ... 2% (8, 20) = (t,2)
where every o; is a conservative transition and R, o Ry, , ... Ry, =R .

Proof : If x R 2’ then since R=R,, o R, _, ... Ra, there exists a sequence
(2i)i=0..n, with zg =2 and z, =2’ and z;—y Ra; for1<i<n. Then it is
easy to check that

(s0,0-20) 2 (s1,21.21) N (Sny Tn-2n)

is a computation of C with only conservative transitions.
Conversely, if (s,z) € Pred},, (t,y) we can find a computation made of con-
servative transitions :

(s,2) 25 .. 2% (t,y)
Since conservative transitions can only rename the tape, or add a letter on the
right of the tape, we can then define a sequence xg, x1 ..., €, which will represent
the content of the tape at the ¢ — th step corresponding to the letters initially
belonging to = . Hence we’ll have zp = x and z;_1 R, z; and if we define too
20, .-, 2n, t0 be the string that will have been added to the tape till the beginning
of the computation(hence zy = €), we have (s,¢) % ... 2% (¢,2,) and finally
Y = Xn.zp where x,, plays the role of 2’ in the proposition, and this ends our
proof. [

Proposition 8 Given a reqular set of configuration L, one can effectively cal-
culate Preds,, (L)

Proof : First, if £ = USES, then
seE

Pred;,, (L = sgSPred (L))

cons cons
Now, for s and ¢ in S , and for RER¢ , define

x € ¥* such that there exists a computation
(5,€) = (50, 20) =5 (51,21) =2 ... 22 (5, 20) = (t,2) (P)
with R,, o..0 Ry, =R
and all the o; are conservative transitions

LR, s—t —

We are going to show that this set is regular. In order to do that we define a
finite non deterministic state automaton A = (R¢ x.5,, %, A’)
We now define A’ :

o if q!—a>q’ €A thenVRER: andVr € ¥ st. o R7 ,(R,q) = (R
,q') € A’. Note that 7 can possibly equal e.

eifqg-5¢q €A thenV ReRe (Rq) S (R.q') €A

e ifg 5, ¢ for some S €R¢
then V R, R'€Rc s.t. R=R' oS (R,q) = (R,q) € A’

We didn’t precise neither an initial state, nor a set of final states, because
we are going to show that :

LR, st = LIA)(R,5)—(1d,1) (3)

Where the last language is the language of the words accepted by A , start-
ing in the state (R, s) , and arriving in the state (Id,t).
Before showing that properly, just note that the automaton A simulates the
behavior of C, starting with an empty tape, and taking only conservative transi-
tions.Moreover, the states of A allow us to guess at each step of our simulation
what will be the global renaming that is going to come until the end. This
allows us to know, when a letter is written on the tape, what it will look like at
the end of the sequence of conservative transitions.

We now show (3)

First, if € Lg, s—+ then by definition, there exists a computation

QO

(5,€) = (50, 70) =% (s1,21) =2 ... 2% (5, 20) = (t,2)
And R,,, o...0 Ry,=R.

Then if one define for every 0 < i <n R;=R,, 0.0 R
convention R,=Id.

Now, for i =0 ton and j =1 to n we define

lf = the letter (possibly empty) that has been added to the channel by the

j —th transition, i.e. «;, but as it appears on the channel at the ¢ — th step
of (P), that is to say, as it appears in z;. Hence, I! corresponds to the letter

and then by

Q41

that has been really written on the channel at the i — th step, which can then
by empty if the transition «; wrote nothing on the channel. Necessarily, for
i < j, we have I] = ¢, and for every i € {1.n} x; = [}.I2...I7 and in particular,
r =z, = 1}..17. Note also that for i > j lf R,y lg+1 , and hence a finite
induction yields to [; R;—q [}* accordingly to our previous definition.

Then it can be shown by a finite induction that the following path is a valid
computation of A :

((Ro,50),€) =5 ((Ry,51),15) 22 ((Ra, 52),1L.02)0. 2% ((Rp, 80), 111207 = ((Id, 1), z)
(4)
Where the transitions a; of A are naturally deduced from the definition we
gave of A’ above.

if we have the following conservative transition «; in C :

[]
!
Qo (Si,1,$i,1) L (si,xi.a) (5)
we will define the transition &; this way :
accordingly to our definitions, o = I} and moreover, we have [; R;_; [,
and then since (5) was a transition of C we must have in 4
L
(Ri—1,8i-1) = (I, 50)
which justifies the ¢ — th transition of (4).
[]
o
i (sim1,Tim1) — (80, Ti) (6)
then since we assume that this is a conservative transition, nothing has
been written on the channel, then I{ = [} = ¢, moreover, here R,,,=R:,=1d
and then
R;_1=R,, o..0 Ry,=R,, 0..0 Ry, | =R;
and accordingly to our definition of A’ since (6) is a transition of C, the
following is a transition of A: (R;_1,8;—1) 5 (R, si)
[]

[CT (Si—hﬂfi—l)i(siwfi) (7)

Then accordingly to our definition of the R; we must have R;_1=5 o R;
and then accordingly to our definition of A" and since we assume that (7)
belongs to A we must have in A

(Ri—1,8i-1) = (Ri,s;)

Then, nothing has been added to the channel, so (l;)] is the e-sequence
as in the previous case, and then this relation justifies the i — th transition
of (4)

10

Which proves that ,CR’ st C E(.A)(Rﬂs)ﬁ(ld’t)

Conversely, suppose that z € L(A)(g,s)-(14,+) that is to say, that we can
find a path in A which looks like

((Ro» 50),€) 25 ((Ri,$1),1") 25 (Ra 52),1M02).. 225 (R,), 1M12..07) = ((Id, 1),)
where we assume that [? is the letter that was induced by 3; (hence, I = ¢ if

B; is en e-transition). Now, for every transition j3;, define j3; to be an associated
transition of A accordingly to definition we gave of A’. Moreover, remind that
R,=Id. Then every thing has been done when we defined A’ in order that the
following holds :

Vi >1 RZ o REZ,:RZ'—I Vn—1 >12>0 RZZRn o RE; O...0 Rﬁ:lzRB\; o..oR

Bit1

Hence during the transition ((R;—1, s;—1),*...[°71) N ((Ri,si),11...1%) the letter
I* (possibly empty)has been added which means that

o If ,571 is of the form : s;_1 'i> s; then we must have that ¢ R;_; [* and
hence then that o R[T 0...0 Rg. " but since in this case, Rg_:Id we

have in fact that o RBV 0...0 Rﬂf_::l 1" and then we can define a sequence

of letters
€ if j <1
)) li=¢
(L)o<j<n by U =1 i e
j)0<5< J ljjojllHl ifi<j<n
I =1

o If BNT is of the form s;_1 ?—U> S; O S;_q i s; , we define the sequence
l;:eforogjgn

Now we can affirm that (8) is a valid computation of C :
(s,€) 5 (s1,17) =2 (s2,13.03) =2 0 25 (s, I 12.00) = (L) (8)

Which then finishes to prove (3).
We now finish the proof of the proposition : for each t € S, if we write

Pred;,, (L) = gsﬁsﬁt where

cons

Lot ™ {(s,2) | (5,2) € Predty,,(L:)}

Now, if we abusively confuse the set of configurations Ls_,; with a language of
3*, proposition 5 tels us that

Loyt ={zeX" |, 2eX", Jye Ly, IRER: st.a Ra',y=2"zandz € LR, 5t}

= U {zeX |T,zeX", Jye Ly st.a Ra', y=2"z, and 2 € Ly, st}
ReRe

11

= U {ze¥ I eX st.aRa’, and w € L4\ LR, st}
ReRc

But this exactly means that

Loi= |J R (Li\ L st)
ReRc

which is a finite union of regular set we are able to calculate. OJ

Corollary 1 INF is effectively computable

We showed at the proposition 3 that INF was the limit of the decreasing se-
quence of lower-sets ®"(conf), and Propositions 4 and 6 allow us to claim that
, given a regular set of configurations L, Predy (L) is regular and computable,
hence ®(L) is regular and computable too. Here we use the fact that if £ is a
real regular language, then 1 £ is also regular and computable (for instance, if £
is recognized by the finite automaton A , 1 £ is recognized by A where we added
loops for all the letters of ¥ on every states of A). Hence, we can effectively
compute the sequence ®"(conf) and we just have to check at every step of our
computation if ®"(conf) = ®"*!(conf), which will eventually arrive, and then
will give us INF'.

5 The bound on the cycles

We now start to focus on insertion channel machines (without renaming), and
we are going to prove the results of PSPACE and NP completeness.

Lemma 1 Let n € N*. Then, if X1, Xs,..,Xonta is a sequence of subsets of
{1...n}, there exists 1 <i < j<2n+4 such that

k=j k=j+1
U= U .
k=i k=i+1

Proof : We use the fact that in a sequence Uy, Us, ...U, 42, there must exists an
i€{1l...n+ 1} such that

e U 9)
k=i+1..n+2
Otherwise, if for each i € {1.n 41} Ui € Up—;y1. pp0 Uk then there exists
an integer «; € U; such that «; ¢ Uk=i+l..n+2 Ui. Hence if for any i (9)
doesn’t hold, we can define an «; for all ¢ € {1..n 4+ 1}. And then, we must
have r < s = «a, # a, since a; € Uy and o, ¢ Us (because r < s). So
{ai,..an} ={1,..,n} and necesserily U,,+1 = 0. And then U, 1 C Up42.
Applying (9) to the sequence Vi = U9, Vo = Upi1, -, Viro = Uy (which is
the reverse of our original sequence) tells us that

Jie{2.n+2}st.ViC | Vi (10)
k=1..i—1

12

Now, if we consider our sequence

X150 Xng2, Xy, o Xonga

applying (9) to X1, .., Xp,+2 and (10) to X, 43, .., Xon+4 allows us to find i < n+2
and n + 3 < j such that

X € Uk:i—&-l“n+2 X}, and Uk:n+3..j—1 X 2 X

And finally
U x= U x

k=i.j—1 k=i+1..j

O

Definition 8 By a sub-channel machine of C = (Q, %, A) , we mean a channel
machine C' = (Q', %, A") with Q' CQ and A CA.

If p=(q,wo)— (q1,w1) — ... is an infinite fair computation, then if

Poo def {states and transitions that are infinitely often visited by p}

it is clear that p~ forms a sub-channel machine of C, which is connected. By
connected, we mean that if you look at p~, as a directed graph whose edges are
the states of p~, and whose vertexes are naturally induced by the transitions,
i.e. for every transition ¢ 1 or q RLN , you have the edge ¢ — r, then, this
graph must be connected.

Since we suppose that p € INF, necessarily, for every transition of po, of the
form !—°>, there must be a transition of the form ?—U>, and there exists at least one

transition -% for one letter o, otherwise the computation couldn’t be infinite
and fair.

Moreover, by definition of p.,, eventually, the computation p must have reached
after a certain number of steps, say n, a configuration (g,,w,) , such that the
infinite computation which is a suffix of p :

(qn»wn) — (Qn+17wn+1) — .. (11)

must remain in po.. In particular, since the computation (11) must also be fair,
all the letters of w, will eventually be read, and so, they will be read by some
read-transition ?—U>, of piny. Hence, w, must contain only such letters that can
be read in poo.

Conversely, if you can find a sub-channel machine of C, say C’, which is con-
nected, and such that everything you can write can be read (and such that
you can write something), then, if from a state (¢, w) you can reach this sub-
channel machine, with a tape which contains only letter that can be read in it,
this ensures that (¢, w) € INF. More formally :

Definition 9 Let G be a sub-channel machine of C. We'll say that G is a good
connected component of C, if

e considered as a directed graph as we made previously it is a connected
graph

o there erists a read transition in G, i.e. a transition of the form q — r

13

e cverything you can write in G can be read in G. That is to say, for every
o € X, if there is a transition q % in G, there must exist a transition

? .
st in G.

With each good connected componentG, we associate the good alphabet of G,
Y to be the set of letters (necessarily non-empty), that can be read in G.

If G is a good connected componentand q is a state of G, and w € XF, , we’ll
say that (g, w) is a good configuration.

Proposition 9 (q,w) € INF if and only if there exists a good connected
component G and a computation

(q,w) = (¢'w') with ¢ a state of G and w' € T, (12)

In other words, (q,w) € INF if and only if we can reach a good configuration
from (q,w).

Definition 10 Let p be a finite computation :

p= (qo,wo) = (qr,w1) = ... = (qn>Wn)-

There is an unique way to decompose p in the following way, which we call the
cyclic-decomposition :

p= (rrch) = (ri,c1) =5 (1f,¢f) 5 (r2, ¢2) = (1},).

(Fm—1s€m—1) =% (P} 1, 1) = (Tms Cm)

such that (1), ¢h) = (qo,w0); (Fm,Cm) = (Gn, wn), and during (75, ¢}) = (riv1,cit1),
only letters from ¢, will have been read, and (r;, c;) % (r},c}) is a real read-
transition that has read a letter that didn’t belong to c;_, so it is the first
read-transition that reads a letter not belonging to c,_,, or in other words, the
first read-transition that read a letter belonging to c;. We call the integer m the
number of cycles of p.

It is easy to check that if p; and po are two computations, with respectively ny
and ny cycles, then p;.ps has at most ny + ng cycles. Moreover, if we consider
a cyclic-decomposition

(o270

p= (rhrcp) = (riye) 5 (], e) & (rayc2) 25 (rhych) o (Tt mm1) =25 (P15 6hut) = (s €m)

it is convenient to note that each computation

(16, ¢p) +y (ri,e1)...(r1,c1) i (ro,c2) ... (Pm—1,Cm-1) X (s Cm)

is a one cycle-computation, and hence the cyclic decomposition allows us to de-
compose a m-cycle computation in a concatenation of m 1-cycle computations.
If p is an infinite fair computation, we can also define a cyclic-decomposition
p=(rhch) = (ri,c1) =5 (15, ¢1) 5 (ra, 00) =5 (15, ¢h)...

(7"1’_1762‘_1) i) (7‘271,6;71) i) (Ti,Ci) — ... (13)
It has to be remarked that in (13) there are infinitely many steps, in other
words, infinitely many cycles, and moreover that, such a decomposition would
be impossible if we hadn’t assumed that p was an infinite fair computation.

14

Proposition 10 (q,w) € INF if and only if there exists a computation p start-
ing from (q,w) whose number of cycles is > K , for K = |Q|(2|X] 4+ 4) + 1.

Proof : First, if (¢,w) € INF, we can find an infinite fair computation p,
starting from (¢, w), and with the previous remark, we know that we can find
some prefix of p with as many cycles as we wish. This proves the implication
from the left to the right.

Now, if p is a computation with K cycles, we look at its cyclic-decomposition :
+ + +
(7’6,0’0) — (7"1,61) — . —> (T’K,CK). (14)

Then, if for a word w we define X, to be the sub-alphabet of the letters of w
(X4 is then empty if w = €), we can roughly write :

o3 2% 75

(rh,ch) —2 (r1,¢1) —2 ... —=1 (rg, ck) (15)
15, 15ey ISep

Where by (g, w) % (r,x), we mean a sequence of transitions, where we’ll have
2o

written all the letters of X5 and only them, and really read all the letters of

and only them. Hence if we’'ve got two computations :

(g, w) % (r,x) % (s,y), we can conclude that we also have
15 153

) 731U, (
1¥2UX3

(¢,w 5,Y) (16)

Now, we are going to use the pigeon-hole principle, in (14). Since K >
|Q|(2]3] +4) + 1, there exists a certain state, say ¢, that appears (2|3] +4)+1
times in (14), which leads, using (16) to a sub computation of (15) which looks
like)

(g, 21) ?i) (g, 22) E) ‘M (q72’(2\2\+4)+1) (17)
1% Es Bes+a+

Now using lemma (1), we can find ¢ < j such that

7%, 2%t 7%,

(¢,2) —= (¢, zi41) —— — (q,2j11) (18)
S S S
and
k=j k=j+1
U= U =
k=i k=it+1

Then, the path (18) induces a sub-channel machine of C ;, G, which is a good
connected component. [

Proposition 11 Let A = (P, X, qo, F) be a finite (non-deterministic) automa-
ton, p,p’ € P, then

Pred’”? (L(A)) def {w]| 3 (p,w) Leyele, (p',w") with w' € L(A)}

leycle

is reqular and computable.

Proof : If C = (Q,A,X) then define B = (P x Q, A", X, (qo,p), F x {p'})
where

15

e for each transition r -% s in A and ¢ % u in P, we have (t,7) = (u, s) in
AL

e for each transition r —% s in A then for each q € P we have

— (¢,7) S (g, 5) in A’ (which corresponds to a false-read)
— (¢,7) % (¢,s) in A’ (which corresponds to a perfect read).

We now claim that £(B) = Pred’.”, (L(A)). O

leycle

Corollary 2 Given a channel machine C, and a state q of C, we can construct
in PSPACE an (non-deterministic) automaton which recognizes IN Fy.

Corollary 3 Given a channel machine C, it can be decided in NLOGSPACE
whether INF (or INF, for a state q) is universal.

Proof :

e /NF' is universal if and only if from every states, we can reach a good
connected component where all the letters can be read, or in other words,
if every minimal (for the reachability relation) connected component is a
good connected component where every letters can be read. Indeed the
sense from the right to the left is clear, whereas, if there exists a minimal
connected component where a letter, say o cannot be read, then the con-
figuration (g, o), for ¢ a state of this connected component, cannot belong
to INF.

e INF, is universal if and only if from ¢ we can reach a good connected
component where every letters can be read. Here, the right to the left
implication is the same as above, whereas if /N F; is universal, then if
¥ ={o1,..,0n} , then (g, (01.02...071)'@'“) € INF, and then there exists
an infinite fair computation 7 starting in this configuration. But then
using the pigeon hole principle, we can find a state r that must appear
just before reading at least |Q| 4 1 letters of w = (01.09...0,,)QT!. But w
is such a word that it implies that the loop of C starting a the first, and
ending at the last of these |Q| + 1 occurrences of r in m must be a good
connected component where every thing can be read.

e Now, given a state ¢, it can be clearly checked in NLOGSPACE whether
in C there exists a path leading to a loop where all the letters can be read.
O

6 PSPACE-completeness

Theorem 1 Given a channel-machine C, and a configuration (q,w), we can
decide in PSPACE wheither (q,w) € INF.

Proof : We just use the fact that the membership of a word to an automaton
is in NLOGSPACE, that PSPACE=N-PSPACE, and corollary (2). O

Theorem 2 Given a channel machine C, and a configuration (q,w), it is PSPACE-
hard to decide weither (q,w) € INF.

16

Proof : let M = (X, Z,29,2f,T) be a linear spacebounded Turing Machine
with states Z, initial state zg, accepting state zy, transitions I'. And let m be
a word on this alphabet of length |m| = M. We are going to build a channel
machine C on the alphabet {a,b, c}, such that there will be a state s such that
(s,e) € INF if and only if m is accepted by M.

First, quite classically, we will encode an accepting computation of M on m
as a string w of the form my % mo * ...mynm*, where the m; will be words on
the alphabet ¥ U Z U {x}, and ¢; = zp - m. On this coding, m; is supposed
to represent the content of the tape, and the location of the head at the i-th
step of the computation of M. Hence, mon must be in state z;. It has to be
noticed that this is not a restriction to suppose that this computation contains
2M steps. This alphabet, ¥ U Z U {x}, can be encoded on the alphabet {0,1}.
Here we encode XU SU{x} with words on {0,1} , of length 27, all endings with
a 0. Clearly, with these constraints, the length of v can remain linear in our
input. Moreover, this is also not a restriction to suppose that the input m has
a length 27 — 2, so that on the alphabet ¥ U S U {*} , the string m;* has length
27, and finally, coded with our coding on {0, 1}, the string will have a length
M 9™ x 27 =20 if B=M4T1+7.

Hence, f§ remains polynomial in the size of our input. Moreover, this is still not
a restriction to suppose 5 even, say = 2 X n.

Now, we give an idea of what C will do :

First, C = ({a,b,c},Q,A) will have only one good connected component, with
only one state, namely F', and on the alphabet {b}. Hence we’ll be allowed to
say that (s,e) € INF if and only if there exists a path to a good configuration
(F,b"). In fact we’ll show that there exists a path from (s, ¢) to a good config-
uration (F,b") if and only if this path is a perfect computation of C .

C will have such a shape that (if in a perfect behavior) it will in a first time
guess a string w = my * mg * ...morr x of length 2%, supposed to encode a correct
computation of M on m as described above.

Then, in a second phase, it will check that w = mj * mg * ...moumx* , is a correct
simulation of M . What has to be checked is that

1. the '’ (coded in {0, 1}) appears at the good positions, that is to say, every
27+7 gymbols. This can be checked in one cycle of the channel.

2. Then it has to be checked that in each m; there is only one symbol which
represents a letter of Z, that is to say there is exactly one head-tape
position. This also can be checked in one cycle of the channel

3. finally, it has to be check that every triple of letters (seen on ¥ U S U {x})
(I1,12,13), (11,15,1%) that appears in say the k-th position (with 2 < k <
2M — 1) of m; and m;,1 satisfy the rules of I', the transitions of M.

The first part of C will be

17

40

First we remark that this automaton doesn’t possess a good connected com-
ponent. Then we recall that we are interested in the question (s,e) € INF.
Here it appears that starting from (s, €), there are various ways to reach the
state r,,. One of these, which corresponds to a perfect run of C , is the following
sequence of transitions :

n

(s,€) = (qo,a) =+ (ro, bb) =+ (q1,aaaa) +H o5 (rn_l,b2'4n71) =+ (qn,a4)
(19)
In fact we have got

Lemma 2 let w be a computation of C of the form
(s,€) = (qn,z). Then

o ifv=a" with \ € N necessarily A > 4"
o Otherwise ba C x

Proof :
O

Hence when a run 7 reaches the state 7, in a configuration (r,, =) there are
three possibilities :

n B
perfect case : the run 7 was perfect and z = a*" = a?

fat case : (the run wasn’t perfect) and z = ¢* with A > 27 and we will in
fact only remind that |z| > 2°

ba C case : ab L z (note that the run until here can have been perfect).

Then the second and last part of C will be

18

|
fa_1b CHECK,

{b,¢} = {a,c}

CHECK,

{a,c} — {b,c}

CHECKy

{a,c} = {b,c}

Here’s the philosophy. We described above how to encode a trace of a com-
putation of M as a string of {0, 1}2ﬁ. Here, a and b will alternatively play the
role of 0, and ¢ will always play the role of 1.

We Analise what can happen in the states r, and g in function of the 3 cases
described above :

perfect case : 7 was a perfect run to r,, and reached the configuration (r,,, aQB).
Then, the transitions of r,, and g (g for guessing) allows us to completely

19

cycle the channel and reach the part of the automaton CH ECK; with a
string « of {b, c}2ﬂ, the only constraint being that it ends with a 'b’. We
now see this string as a trace of the computation of M on m, b playing
the role of 0, and ¢ the role of 1. Hence, we can see that the fact that w
ends with a b is not a problem, since we made the assumption that in our
coding of ¥ U S U {x} by {0,1}, all the {0, 1}-codes end with a 0, i.e. in
the current context, with a b.

Hence, starting in the perfect case, we can either reach CH ECK; with a
string y € {b,¢}?” ending with a b (which means that the simulation kept
on being perfect), y is then a potential trace of M.

Or there has been a non-perfect step and necessarily |y| > 27, since in this
part of the automaton, every time we read something we afterward write
something else.

fat case : for the same reason, if we reached 7, with a channel = , s.t. |z| > 25,
then when reaching C HECK, with the channel y , we must have |y| > 2°.

ba C case : here, we arrived in r, with a channel of the form z¢.b.z;.a.25.
Now since until CHFECK; the only letter that can be read is a and

since the last transition is necessarily LN , we can claim, that, when
reaching CHEC K, the content of the channel y will necessarily contain
the subword bab, and so also ab. We call this the ab Ccase.

To summarize, when we reach CHECK; with the tape x , there are three
possibilities :

{b, c} perfect case : z € {b, c}2ﬁ and ends with a 'b’. In that case we name
def
w =z

fat case : |z| > 28
abC case : abC x

Now, if by induction we suppose that when we reach the part CHECK ;11

of the automaton, we are in one of the three cases listed above : perfect, fat, or
ab C.
What CHECK> ;41 is going to do is checking one of the properties of the trace
w listed above. In order to do that, we consider that the content of the tape is
a string = of {b, 0}2[3, (true in the perfect case), and that the letter b (resp. c)
plays the same role as 0 (resp. 1) in the way to encode a trace of M. Then, in
CHECKj 41, the tape is going to be cycled, the automaton reads only b and ¢
, and check the desired property on the associated word on {0,1}. But instead
of making a real-cycle on the alphabet {b,c}, it changes the b in a and the ¢
remains a c. That is to say that in CHECK3 11, there are only transitions of
the form

2 la

(91 — (92 — 03 or
01 2 05 % 0.
We then are sure that there are no good connected componentin CHECK ;1.
Hence if we analyze what happens when we’ll leave CHECK> ;11 to enter in
CHECKj, (;41) in accordance with the three possibilities we had (by hypothesis)
when we entered in CHECK5 ;11, we have :

20

{b, c} perfect case : then if we reach CHECKj (;11) having made a perfect
run and a complete cycle of , the content of the tape y must be the same
as the one when we enter x, if you replace the b by some a , and the ¢
remain ¢, and moreover, we are sure that the property we wanted to check
was true. Otherwise there are two possibilities. Either there has been one
false-read, and in that case, we will enter the fat case anyway, or there
hasn’t been any false-read, but we left CHECK5 ;11 before to have read
all the b and ¢. Then we necessarily enter in the ba C case (here, the
fact that in our coding of¥ U Z U {*} on {0,1} we supposed that all the
codes ended with a 0 has to be use).

fat case : since the length of the channel cannot decrease, we will reach CH EC'Kj (1)
remaining in the fat-case.

ab C case : here we know that we won’t be able to read the a in CHECK3 ;41
, and so neither the b , but we’ll have to write an a , so we’ll necessarily
reach CHECK3 (j11) in the ab C case.

Hence we can conclude that we’ll reach CHECKj5 (;41) in one of these three
possibilities :

{a, c} perfect case
fat case
ba C case

In the same way, we can show that if we start in CHECK>; in one of the
three cases

{a, c}perfect case
fat case
ba C case
then we will necessarily reach CHECK3 ;41 in of these cases
{b, c} perfect case
fat case

ab C case

Which is then enough for an induction. And then, if we assume that N is
odd, which is not a problem since we can anyway had an empty-check, we know
that when we’ll leave CH EFC' K and reach the state p, we’ll be in one of these
possibility’s

{b, c} perfect case : and m is accepted by M
fat case

ab C case

21

Then when we’ll leave the state tg,say in the configuration (¢, z), we’ll have
to be in one of these situations :

8
'a’-perfect case : v = a? .

fat case
ba C case

Now we have

Lemma 3 If (to,) = (F,y) withy € {b}* , then in facty = ¢ and x € {a}=*"

Proof : O

Hence, the only possibility to reach a good configuration in F', was that the
run was perfect, guessed a trace of M, and really cycled the tape during the
various checks, and hence that the trace of M that had been guessed at the
beginning of our path was correct. [J

7 NP-completeness with a two-letter alphabet

Lemma 4 Given two letters a, b (that might be equal) , an integer i in binary,
a channel machine C , and two of its states q and r, define

S paths p in C starting in q and ending in r such that
T you only read some a, but at least i, and you only write some b

Then, we can calculate in polynomial time
j def mgn {number of b that we write in p} def H,p(q,r,1) .

PEPq,r
Since this number could be not defined if no such path exists, i.e. Py, =0, we
more precisely require that we could know in polynomial time if this number is
defined, and in that case what’s its value.

Proof : We first remark that for m,n > 0 , we’ve got

Ha,b(q7 s, m + TL) = nélg Ha,b(qa T, m) + Ha,b(ry S7n) (20)

Where we state that

unde fined + whatever = unde fined and that
min{unde fined,x} = x.

unde fined, plays quite a similar role than co. Now

e forevery ¢, H,(q,r,0) can be calculated in polynomial time. It suffices
to find, if it exists, a path using only read — a and write — b edges, that
contains the less number of write — b edges.

e for every q,r, it’s clear that H,,(q,r, 1) < 2|A| or is undefined. Then ,
for all the states, ¢, we calculate successively their values :

— Hap(q,7m,1) =0 if and only if there exists a non-empty read a path
from ¢ to r.

22

—Forn > 0, Hap(g,m,1) = n+1if and only if Hop(q,71) £ n

and if there exists a transition s -% ¢ and H,3(q,5,0) = k and
Hg,p(t,r,0) = 1 with k +1 = n+ 1. Hence in 2|A| steps, we can
compute all the values of H, (q,7,1).

e Now that we’ve got the H,(q,7, 1), for every ¢ and r, we can easily
construct by induction the values of H, (g, r,27) for j < logi and for
every ¢ and r, using (20).

e Finally, using once more (20) , we can construct the value of H, (g, 7, 1),
using the binary decomposition of i.

All this construction requires well only a polynomial time.[J

Lemma 5
<K cycles

If (q,w) (¢',w") (21)

then there exists w"” C w' and a computation

(g;w) = (¢';w") (22)
such that the length of the computation (22) is less than (jw|+1)(|Q|+1)%.
Proof : We make an induction on K.

e if K =1, then (21) is a computation with less than one cycle. So if we
write w = wi.ws...wy,, the beginning of the computation (21) must look
like

(q*, w) laa, (¢, w.ay) laa, ey (¢',w.a1.a...a;) Jwr (¢,

W... Wy, A1 -..A7)
(23)

Now, we can then find in C a subpath of (23) of length k < |Q| starting

from ¢' and arriving in ¢/*'. This allows us to say that there exists a

computation of length k& < |Q)] :

(¢',w) = (¢, wa...wn.ug)

where vy C ay...a,.

Now if we repeat this for all the letters of w that must be read in (21) we
can found a simulation of length k£ < |Q| x (Jw| + 1) that leads to the a
configuration (¢’,w”) with " C w'.

e if K +1 > 1 then we can decompose the computation (21) in two parts :
K—1 cycles 1 cycle ,
(g, w) (r,v) (g, w')
Then by induction we can found v’ C v such that we have a computation
(g,w) = (r,v") of length < |w|(|Q| + 1)¥ .
Then since we have got (r,v) Leyele, (g,w")

it is straightforward to check that we also have for a w” C w’

(r,0') =22 (g, w")

and then using the the property we’ve showed for K = 1 we have that this
computation has a smaller length than |w||Q|(|Q| 4+ 1)® and then finally

23

the computation

(¢, w) = (¢, w")

has a length

k< wl(1Q +)X +[wllAl(Q + DF = [wl(jQ + 1)<+ . O

Theorem 3 If C has only two letters, then the membership in INF is in NP.

Proof : we suppose that the two letters of C are a and b.

First, given a configuration (q,w) , we know that it belongs to INF if and
only if from this configuration we can reach a good connected component of C
where everything we can write can be read, and moreover, we must join this
component with a tape containing these good letters that we can read. With
two letters, there are two possibilities :

e Fither from ¢ we can reach in C a good connected componentG where we
can read the both letters a and b. In that case, it really doesn’t depend
on the initial content of w, because, whatever the content of the tape w’ is
when we reach C’ , we’ll be able to read every thing. Hence we just have
to decide the problem of the reachability in a graph to tackle this case,
which can be done in PTTMFE.

e Otherwise, the only possibility for (¢, w) to be in INF is that we can
reach a state ¢’ of a good connected componentG, where, for instance we
can read a, and the content of the tape is a word w’ € {a}*. That is to
say we have the following computation :

(g, w) — (¢',w') with w’ € {a}* (24)

Now, since we here make the assumption that we cannot reach a good
connected componentwhere we’re able to read the both letters, and using
theorem 1, we can suppose that we have a subcomputation of (24) (where
maybe we have to replace a by b) , with less than @ cycles. Then using
lemma 5 , we can suppose that we can find a computation

<|Q|cycles
e

(g, w) (¢, w") with w”" Cw' € {a}* (25)

Where the number of steps of this computation (25) is less than |w| x
(1Al + 1)|Q| , and using once more theorem 1, we can correctly suppose
that (25) is a computation with less than |Q| cycles.

Consider now the word x that we would obtain if would have never really
read a letter in (25) , in other word we consider the initial content of the
tape w and we add to it, on the right, all the letters that will be written
during (25). We can then obtain an unique decomposition of z

x = a’.br.a2 . a b el

with 4; and j; > 0 except maybe for ¢, and jr41 .

Then we must have & < |Q|. Indeed, otherwise k£ > |Q|, and since we
know that all the b of = have been read in (25)(because w” € {a}*), we
can consider for each 1 < h < k the transition which read the last b of bi»

ri — 1}

24

Then, using the pigeon-hole principle, we can find m < n such that
Tm = . But then, looking at the subcomputation in (24) starting in
rm and ending in 7, this allows us to consider a cycle and hence a con-
nected component, in G where we can read b but also a because between
rm and 7, , in (24) , the a™ for n < h < m will have been read. This is
then a contradiction with the fact that we supposed we couldn’t reach a
good connected componentwhere we could read a and b. Hence k < |Q).
Since in (25) there were less than |w|(|A| 4 1)@l steps, this means that
|z| < |w| + |w|(JA| + 1)I9] which is exponential in the length of our input,
and, if you remind that = = a® .b71.a%...a% b .a7*+1 | then since every i
and j; are less than |z|, every ¢; and j; have a polynomial size, if written
in binary. Hence, a way we are going to be sure that (¢,w) € INF is by
guessing the successive steps of a computation like (25).

For doing that, we guess the number K < |Q| of cycles of the computa-
tion, and then the successive contents of the channel ¢y, ca,...,cx 1 after
each cycles, which means that for instance ¢; = w and that w” = .cx 11
where ¢ is a suffix of ¢x. Since in (25) x represents the concatenation
¢1..Ck+1, and that we’ve seen that the number of alternation of @ and b in
x was less than ||, we can guess the contents of the channels ¢, as words
of a length smaller than |z|, and of the form a® .6 .a®2...a" .b* .af*+1 with
kE < |QJ. In fact, we guess in binary the numbers i), and j,, which then
makes a linear guess of polynomial guesses. After that, we have to be sure
that the computation we guessed was correct.

For instance, if
¢ = af b9.a
cry1 = bha’

we could for instance guess that we started read the whole block af |
starting in state ¢ and finishing in state r, and that during that we wrote
“4'* b, with ¢ = ¢’ + 14" (that has to be guessed too).

Then we guessed g = g’ + ¢” and that starting in state r, and finishing
in state s we read the ¢’ first a of a?, and wrote the " remaining b of
b®. Then, guessing that j = j' + j”, we guess that starting in state s and
ending in state ¢ we read the g” last b of b9 , and wrote j' a, and finally,
that starting in state ¢ and finishing in state u, we read a”, and wrote al”.

In other words, what we did is just guessing this computation :

*

(q,af b9 +9" ah)y 5 (1 099" o b)) 55
(s,bgu.ah.bi/””) 5 (t, albi' + i”.aj/) N (u,bi/““.aj/*j“)

Hence, the only thing that remains to be checked, is that every time we
supposed we could start in a state g, read 7/ and write j b’ and end in
state r, it was true. Instead of that, we just check that H, (g, r,7) < j
, and lemma 4 ensures that we can do it in polynomial time. Because
indeed, if we check that we have H, (¢, 7,7) < j, then using the fact that
we’ve got a downward transition system, we can make an induction that
finally tells us that we had a path

(g, w) = (¢',w") with w” C w”, and hence w"” € {a}*. O

25

Theorem 4 If C has only two letters, then the membership in INF is NP —
hard.

Proof : We reduce 3 — SAT. Let’s then consider an instance (P) of 3 — SAT
on n variables x1, xs,...x, with m clauses.

/\ C; with C; = yi Vyb vV yi (26)
i=1l..m

We assume then that each clause contains exactly 3 literals, which is not a
restriction for the NP — hardness of 3 — SAT. Then consider the following
channel automata C

What we mean by the transition C; , for 1 <¢<m and k=1,2 or 3 is the
following. If yf = x; , then Cj;j, is of the form :

7a la 7a la 7a la 7a la

PN PN
(@) @) M) @) @y 6
~ _ 7 ~ _
?b b ?b 'b ?b b ?b 'b

Note that if we had had yf = —x; , the block ¢; ;, of C would have been the
same except that there would have been

The idea is that first, the only good connected component in the dashed part
around the state s. Hence, (g1,¢) € INF if and only if it is possible to find a
path from (g1, €) to (s,w) with w € {c}*.

26

We explain what is the idea of the coding, and at the same time prove that if
P is satisfiable, say with a valuation V, then (g1,¢) € INF. In order to do that
we encode the valuation V of the variables x4, ..., z, as a string wy = wy...w,
in {a,b}" , saying that x; is true if and only if w; = a.

Then, the first part of a path from (g1, €) to C is just a guess of length n,
and then we can reach C; with the content of the tape wy . Then, if we suppose
the computation perfect, i.e. every read transition really removes a letter of
the tape, during the computation, the tape will always contain a n-letter word.
Then, for each clause C; = y¢ V i V yi, the passage from the state C; to Cjy1
just cycles the tape, and check that the literal associated with the path which
has been chosen effectively valid our instance of 3 — SAT, accordingly to w.
Finally, the passage

q 1o, 1 (27)

just adds a b on the tape, and then, the sequence ;1 — .. — r reads the letters

that correspond to w, and finally the transition r s reads the b we had
written in (27). So we arrive in the configuration (s, €) , which is a good config-
uration.

Now, if conversely (z1,6) € INF | let’s consider a path m which leads to
a good configuration, that is to say here, a configuration of the form (s,a’)
with some \ € N.
Clearly, 7 must first pass through the states gi1,..g, and then reach C; with a
content of the tape, say w, which contains n letters. As above, we interpret
this word as a valuation V of the variables x;. Now, we prove that the part of
the computation of = which corresponds to the passage from the state C; to ¢
is perfect. Indeed, whatever this passage is, it must be a sequence of transitions
of the form

o0l
q——q -
Hence suppose the simulation hasn’t been perfect, then the length of the content
of the tape, say w’ must be > n when reaching the state .

Afterward, we must have the transition (q,w’) 2, (r,w’.b), and after having
passed through the states r1,7,...,7, we must reach the state r after having
read n letters, if the computation was perfect, less otherwise, and then in any
case, we are in the configuration (r,w”.b), where w” is a proper suffix of w’

(since we supposed |w’| > n). Hence the transition r 2y s won’t allow us to
read the last b of w”.b, and then 7 should reach a configuration (s, w.b). But
from s, it won’t be possible to join another state, and it won’t be either possible
to read this b, which is then a contradiction.

Hence, necessarily, the part of the computation that crossed the states Cy, .., Cp,, ¢
had to be perfect, which ensures the valuation V associated to w satisfied P. U

8 Counter machines
We now consider insertion counter machines. This can been seen as an insertion
channel machine with few channels, using only a single letter alphabet. We then

fix a counter machine C = (Q, A, ¢y, ..., cy,), with states @, transitions A and n
counters. The notion of fairness is here irrelevant, since we have only one letter.

27

However, we can consider the problem of an infinite computation with some set
constraints, that is to say, for each state ¢ € @), we associate a lower-set of N™
L closed by <, that is to say, if v € Ly and y < « then y € L,. According
to these constraints, we define a correct configuration to be a configuration
v = (g,c1,...,¢q) such that (c1,...,¢,) € Lg. Then, INF, which we define
as the set of all the configurations « such that it is possible to start an infinite
computation with only correct configurations is a lower-set, and computable,
using the same methods as the ones we used to calculate I N F for the CAROT'S.

Proposition 12 Giving an insertion counter machine C, some constraints L,
given with a cobasis in binary, and a configuration v, we can decide in EXPSPACE
ifyeEINF

The cobasis which describes the L, are giving say with elements of N” of the
form (by,...,b,). We define K to be the maximum of all the x; that appears
among all the elements of the basis of all the L,;. According to this we define
oK (n) to be the length k of the longest computation 7 = 79 — ... = v —
... — g such that 9 ¢ INF, for a counter machine with the K as defined just
above. We then are going to control ¢ (n) by induction on n

For n = 1, it is straightforward to see that the number of correct configura-
tions is less than |Q|.K, so if we consider a correct computation

(90,¢) = ... = (qq.x)

then using the pigeon hole principle, we can find two identical configurations,
and then (go,c) € INF. So ¢k (n) <|Q|.K.

If we have n + 1 channels, and the constraints Li,..., L,+1, let’s define
N = ¢ (n) + K, and let’s show that

¢x(n+1) < [Q[.N""' =Q|.(¢px (n) + K)"F. (28)
Let’s consider a correct computation
T=%5 —7--- 7 Y|Q.Nn+1

Then, there exists a channel, say ¢,+1, and an ¢ such that the content of ¢, 41
in ~; is greater than N (otherwise, using the pigeon hole principle, we could still
find two similar configurations in 7, and then would be able to find an infinite
correct computation, but we implicitly supposed that vy ¢ INF.) Then around
the index 4, we can find a subcomputation of 7 :

p Y. = Vj+N-

and since we defined N = ¢(n)+ K, and that in every transition a counter value
can at most decrease by one, we know that the counter value of ¢,41 in this
subcomputation will always be greater than K. Hence during this path :

P i > VN

for each L, = cobasis(b1,...,bs) (the by, are here the elements -of N"T1- of the
cobasis of Ly, and we'll refer as by = (b1(1),...,b1(n + 1)) for instance), we

28

have for any j <m < j+ N
lf’Y’m = (Q7017-~~7cn+1)

(Cl,.. . 7Cn+1) ;—4 b1 but Cnt+1 > b1(n+ 1)
(Cl,...,Cn_;,_l) zbz but Cn+1 >bz(n+1)

(Cl,. . ~7Cn+1) z b, but Cp+t1 > ba(n+ 1)

and so,
(Cl,...,C") ;_4 (bl(l),,bl(n))
(e1,...,cn) Z (b2(1),...,ba(n))

(c1,..vycn) # (ba(1),...,ba(n))
Now, if we define C' = (Q,A', ¢y, ..., ¢,), and the Ly to be the projection of the

n first coordinates of Ly on N”, and define A’ to be the same as A, except that

when there is a transition
!

q oty or q lcltl» in A, we just consider in A’ an e-transition ¢ — r, i.e. a
transition without any action. Then, it is a routine to check that the projection
(we consider that the projection of (¢,c1,...,¢ht1) 18 (¢,¢1,...,¢4)) of p, pis
a correct computation of C’; and then by induction hypothesis, since the length
of this computation is ¢x (n), we can find an infinite correct computation in C’,
T, starting in the configuration that is the projection of 7;. This also allows
us to find an infinite correct computation in C’ starting in the projection of o,
since we can reach correctly ~; from 7 in C, so we can also reach the projection
of ; from the projection of 7o in C’. But clearly, an infinite correct computation
in C gives rise to another one in C. So we have proved (28).

Now, if we keep in mind that

¢r(l) < |QLK
<

oK (n+1) 1Q|.(2¢x (n))*+!
because ¢ (n) > K we have
pr(n+1) < |Q|(2¢x(n))"
< 1QI2IQI(2¢K (n — 1))
< 1QLEIQN™!.(20k (n — 1))+
< ...
< |Q|(2‘Q|)n+1 . (2‘Q|)(n+1)‘n“.21.¢K(1)(n+l).n...2.l

1Q].(2|Q]) 1! .(|Q|.K) +D)!

Which is doubly-exponential. So v € INF if and only if a computation starting
in v of this length can be made. But, this every steps increases a counter by
at most one, along such a computation, the size of the computation, stored in
binary will be exponential. We can then conclude using that PSPACE=NPSPACE.
|

We don’t know if this result is optimal. Maybe the hardness results of
[CLM76] could be applied, but anyway, we didn’t see how to use them directly.

References

[BMOWO7] Patricia Bouyer, Nicolas Markey, Joel Ouaknine, and James Wor-
rell. The cost of punctuality. In LICS ’07: Proceedings of the 22nd

29

[CLM76]

[FS01]

[OW05]

[OW06]

[Sch02]

Annual IEEE Symposium on Logic in Computer Science, pages
109-120, Washington, DC, USA, 2007. IEEE Computer Society.

E. Cardoza, Richard J. Lipton, and Albert R. Meyer. Exponen-
tial space complete problems for petri nets and commutative semi-
groups: Preliminary report. In STOC, pages 50-54, 1976.

Alain Finkel and Philippe Schnoebelen. Well-structured transition
systems everywhere! Theoretical Computer Science, 256(1-2):63—
92, April 2001.

Joél Ouaknine and James Worrell. On the decidability of metric
temporal logic. In LICS, pages 188197, 2005.

Joél Ouaknine and James Worrell. Safety metric temporal logic is
fully decidable. In TACAS, pages 411-425, 2006.

Philippe Schnoebelen. Verifying lossy channel systems has non-
primitive recursive complexity. Information Processing Letters,
83(5):251-261, September 2002.

30

