Introduction to Berkovich spaces

Florent Martin

These are notes from a mini-course I gave at the Students’ Workshop on Tropical and Non-Archimedean
Geometry at the University of Regensburg in August 2015.

1 Naive non-Archimedean manifolds

A field k is non-Archimedean if it is equipped with a complete non-Archimedean norm |- | : & — R . This
means:

L |z +y| < max{|z], [y]}.

2. |yl = |2[ - [yl-

3. |z| = 0 if and only if = 0.

4. (k,|-|) is complete.
The norm | - | induces a metric on k. We set

K={xek||z <1} Ko ={xek ||z <1} k= k° ko

Due to the ultrametric inequality, k° is open and closed. Examples of non-Archimedean fields are

Qp, Fy((£)), C((t)),C, := Q3% any field k with the trivial norm (|z| = 1 if  # 0 and |0| = 0)... Note that
C, is algebraically closed.
Like on R and C, there are power series on k. For instance:

1 =5 = > >0 X" converges for |X| < 1.

. X] < -
2. exp(X) = >,50 5 converges for pP=1
- X <1 in characteristic(0,0), ex.C((%)).

L in characteristic (0,p), ex : Q.

We will say that a map between two open subsets U C k™, V C k™ is naively holomorphic if it is locally
given by convergent power series. We define naive k-analytic manifolds as topological spaces obtained
by gluing open subsets of k™ along biholomorphic maps. A map between naive k-analytic manifolds is a
naive holomorphic map if it is given locally by naive holomorphic maps between the open subsets of the
charts.

This definition is pathological for the following reasons.

1. [Ser65] If k is a local field (F,((t)) or a finite extension of Q,), and d > 0 is a positive integer, there
are only ¢ — 1 (where ¢ = Card(k)) isomorphism classes of compact naive k-analytic manifolds of a

given dimension d:
{0 k) TI) % TT k)%

qg—1



2. If k is algebraically closed, and n > 0 is an integer, there is no compact naive k-analytic manifold of
dimension n. But:

(a) All nonempty open subsets of k™ are naively biholomorphic.
(b) If X is a smooth k-algebraic variety of dimension n, the naive k-analytic manifold Anaive-an jg
biholomorphic to k™.

What is the problem? There are too many open subsets, and k is totally disconnected. The closed
unit disc is the disjoint union of its open unit balls:

E=][{zek|2=2}
ek

For instance

Zp= ] i+pZy

i=1..p—1

If g : k — k is any function, then f : k° — k defined by z € k° — g(Z) is a locally constant naive
holomorphic function on k° which is not constant. In particular, f is not given by a power series converging
on k°.

What is the solution? There are several approaches.

1. The theory of rigid spaces (Tate): the idea is to restrict to a class of admissible covers.
2. Add new points to the spaces: Berkovich spaces, adic spaces.
3. Use formal schemes over k° and inverse formal admissible blowing-ups (Raynaud).

4. ..

As in algebraic geometry, these approaches always consider points in the algebraic closure.

2 Affinoid algebras and spaces

2.1 Definitions

The Tate-algebra in n variables is

k{Ty,...,T,} = IV | ay € k, a, ——— 0},
(BB = ([ b )
These are the power series which converge on the closed unit polydisc. It is a UFD, a Noetherian and
regular ring... We equip k{71, ...,T,} with a k-Banach algebra norm as as follows:

I Z a, || = m9x|a,,|.
veNn

If I is an ideal of k{T1,...,T,}, we equip the quotient A := k{T1,...,T,}/I with the residue norm: for
feA,
[flla:=f{llgll | g € K{T1,.... Tn}, f=g+1}.

One can check that (A, | - ||4) is a k-Banach algebra (this follows from the fact that ideals are closed in
E{Ty,...,T,}). Ais called a strictly k-affinoid algebra.



More generally, we set

k{r;1T1 o i) = {VEZNn a, T" | ay €k, |a,|r” —>V1+.”Vn_)oo 0}.

These are the power series which converge on the closed polydisc of polyradius (r1,...,7,). We call
quotients k{r'T} ... ,r; T, } k-affinoid algebras.
A morphism between the k-affinoid algebras A and B is a continuous morphism of k-algebras A — B.

A bounded multiplicative seminorm on (A, || - ||) is a map |- | : A — Ry such that
Lof gl <[fI+lgl

2. |fal =119l

3. 1] =1.

4. There is a constant C' > 0 such that for all f € A, |f]| < C||f]|.

Definition 1. Let A be a k-affinoid algebra. We set
X = M(A) := {bounded multiplicative seminorms |-|: A — Ry}
equipped with the weakest topology making the maps
M(A) —R
L = S

continuous for all f € A. We call X a k-affinoid space.

The k-affinoid spaces will serve as building blocks for k-analytic spaces.
Proposition 2. M(A) is a nonempty compact Hausdorff space.

Notation: we want to consider X = M(A) as a geometric space and f € A as functions on X. So if
z: A — Ris an element of M(A), and f € A, we set

[f(@)] == (f).
A basis of open subsets for the topology of M(A) is given by the sets
U= {.IEM(.A) ’ oy < |ft($)| <Bi, 1= ln}

where f; € A and oy, 8; € R.
Let ¢ : A — B be a morphism of k-affinoid algebra. It induces a continuous map *M(B) — M(A).
If x : B — R is an element of M(B), ¢*(z) is the seminorm

fe A= lo(f)(x)]

which is obtained as the composition A 2 B < R. A morphism of k-affinoid spaces is a morphism of the
form ¢*, so the category of k-affinoid spaces is equivalent to the opposite category of k-affinoid algebras.

Theorem 3. Nullstellensatz for strictly k-affinoid algebras. If m is a maximal ideal of a strictly
k-affinoid algebra A, then A/m is a finite extension of k.

For any finite extension of non-trivially valued non-Archimedean fields k — k', there exists a unique
non-Archimedean norm | - |- on k' extending the norm of k. So if m is a maximal ideal of A, we have a
canonical associated norm | - |, on A/m and we can associate an element of M (.A)

A= A/m I R

This implies that one has a correspondence between maximal ideals of k{T},...,T,} and the orbits of
((k*8)°)" modulo Gal(k*8/k). More generally, if A = k{Ty,...,T,}/(f1,., fm) one has a correspon-
dence between maximal ideals of A and the set of points z € ((k*#)°)" such that f;(z) = 0 for all i modulo

Gal(k¥2 /).



2.2 Example of the unit disc
Let us assume for this part that k is algebraically closed. We set
B = M(K{T})

and call it the closed unit disc. If ¢ € k° and r € [0, 1], we denote the closed disc of center ¢ and radius r
by
B(e,r) :={x € k° | |z —c| <r}.

We want to classify the points of B.
Type 1. If ¢ € k° then the multiplicative seminorm
fek{T} = [f(0)]

defines a point of B = M(k{T}). These are in correspondence with maximal ideals of k{T'} and are
called points of type (1).

Type 2 and 3. Let us first remark that the Banach norm on k{T'} given by

f=2 a,T" = |||l = max|a,|
neN nel

is multiplicative. In addition || f|| = max.cp(o,1) [f(2)]-
More generally if r €]0, 1] let us set
| ! |D(O,'r) : f = ZanTn = |f|D(O,T) = max|an|7"".
Then |- |p(o,r € B, i.e. it is a multiplicative seminorm. In addition, it satisfies for all f € k{T'}

|flpeo,r) = L |f(2)]-

More generally again, if If ¢ € k° and r € [0, 1] we define

| : |D(c,r) : f = ZanTn — |f|D(c,r) = maX|an|Tn-
Then |- |p(e,ry € B, i.e. it is a multiplicative seminorm. In addition, it satisfies for all f € k{T'}

|f|D(c,7‘) = zenll)a(gfr) ‘f(2)|

When 7 € \/[k*], | - | p(c,r) is called a type of point (2) of B, and when 7 ¢ \/|k*], |- |p(c,r) is called
a point of type (3).

Type 4. The field & is called maximally complete if every family of embedded nonempty discs has a non
empty intersection. For instance local fields are maximally complete, but one can prove that C, is
not maximally complete.

Let us assume that & is not maximally complete, this means that one can find a positive real number
r €0, 1], and for each p €]r, 1], an element ¢, € k° such that

&= {D(cpap)a P E]Ta 1]}
is a family of embedded discs with empty intersection. We then set

[ le £ € K{T} > jnf |flp.

One checks that | - |¢ defines a multiplicative seminorm. So |- |¢ is an element of B. The assumption
that the family £ has empty intersection implies that | - |¢ is not of type (1), (2) or (3).



Fact 4. Any point of B = M(k{T}) is of type (1)-(4) (cf. [Ber90, 1.4.4]).
Make a picture, and draw lines. Check that the map
r€[0,1] = |- [per €B
induces a homeomorphism between [0, 1] and its image.
Proposition 5. B = M(k{T}) is arcwise-connected.

If A € k°, lets us set
B;\r ={zreB | (T — X)(z)] < 1}.

This depends only on the reduction X € k. Then B;\“ are a disjoint family of open subsets of B, but now,

IIB; <5
ek

B; is not closed, and in addition

Indeed there is just one point missing: |- [p(,1)-

3 Gluing of affinoid spaces

3.1 Example of an annulus

Let 7 € k such that 0 < |7] < 1 and let us consider the annulus
U= {oeB=METY | Il <IT() <1}
Try to make two drawings of U.
We want to see U as a k-affinoid space inside B. What should be the set of analytic functions on U?
AU = {f = Z a,nTn | |an\ m} 0 \a_n7r7"| m O}
nez

If one set S := 7,

Av ~ k{S,T}/(ST — ).

Fact 6. The morphism
E{T} — kE{S,T}/(ST — =)

induces a homeomorphism between M(k{S,T}/(ST — «)) and U through the following morphism of k-
affinoid spaces

M(K{S,T}/(ST — ) — B.

3.2 Affinoid domains

Definition 7. Let X = M(A) be a k-affinoid space. A closed subset U C X is an affinoid domain of X
is there exists a k-affinoid algebra Ay and a morphism of k-affinoid algebras A — Ay such that

1. o*: M(Ay) = X induces a homeomorphism between M(Ay) and U.



2. For any morphism of k-affinoid space f : Y = M(B) = X = M(A) such that f(Y) C U, there exists
a unique morphism of k-affinoid spaces Y — M(Ay) making the following diagram commutative:

M(.AU) — X
v_Y

Here is a list of examples.
1. In the example of subsection 3.1, U is an affinoid domain of B.

2. If f1,....,fn€A
U={zeX||fi(z)|<1,i=1...n}

is an affinoid domain, called a Weierstrass domain, and
Av ~ A{Ty,....,T.}/(fi = Ti)i=1... n-
3. If f1,..., fn,g € A generate the unit ideal of A,
U={reX||fi@) <), i=1...n}
is an affinoid domain, called a rational domain, and
Av =~ AT, ..., Tu}/(fi — 9T3)i=1...n-

Lemma 8. IfU and V are affinoid domains of X soisUNV.

Theorem 9 (Tate’s acyclicity Theorem). Let X = M(A) be a k-affinoid space and let Uy, ..., U, be
a finite cover of X by affinoid domains. Then

A — H AUi_> H ‘AUimU]'

i=1..n 1<i<j<n

1s exact.

3.3 Gluing, informal definition

We only sketch the global definition of a k-analytic spaces. For precise definitions, see [Ber93, section 1].

A k-analytic space is a locally Hausdorfl topological space X covered by a mice family of compact
subsets {U;} (the U;’s should be a net of X, cf. [Ber93, section 1]) such that each U; should be identified
with a k-affinoid space, and such that whenever U; C U;, U; should be identified with an affinoid domain
of Uj .

A morphism between two k-analytic spaces is roughly a continuous map f : X — Y such that whenever
U C X and V C Y are affinoid domains with f(U) C V, then fiy : U — V is a morphism of k-affinoid
spaces.



4 Analytification and GAGA

4.1 The affine space
We define

(A2)™ = {multiplicative seminorms | - | : k[T1,...,T,] — R4 extending the norm of k}

with the weakest topology such that for all P € k[T, ...,T,], the map (A})*" — R, defined by ||+ |P]
is continuous.
For each 7 > 0, the inclusion k[Ty,...,T,] < k{r~='T1,...,77'T,} induces a map

M(E{r—" Ty, .. v 7 T} — (AR)™
which induces a homeomorphism between M (k{r=1Ty,...,r71T,}) and its image

Bl = {x € (AR)™ | |Ti(2)] < r,Vi}.

an

For all r < s, Bl is an affinoid domain of B! and this equip (A})*" with the structure of a k-analytic

space.

4.2 Algebraic k-varieties

Let X be an affine k-variety given by X = V(I) for some ideal I C k[T3,...,T,]. For r > 0 we set
X, = M(k{r~1Ty,...,r='T,}/I). Tt can be identified with a closed subset of

X .= {multiplicative seminorms | - | : k[Ty,...,T,]/I — R, extending the norm of k}

equipped with the topology inherited from (A})*", i.e. the weakest topology such that for all P €
k[Ty,...,T,]/I, the map X*™ — Ry, defined by |- | — |P| is continuous. For r < s, X, is identified with

an affinoid domain of X, and this equips X'®" with a structure of k-analytic space.

Example 10. We have a homeomorphism

(G i)™ = {multiplicative seminorms | - | : kT, T, ... T, T, Y] — Ry extending the norm of k}.

The continuous map
(G%,k)an N R™
T = (log |T5(@)])i=1..n

is continuous. For ry,...,r, € (R})", the seminorm

E — max
vezn

veEZL™

Un
n

ay|ri*...r

s a continuous section of the above map.

When X is a k-scheme of finite type, one can glue the above construction and define a k-analytic space
X" which defines a functor X — X" from the category of k-scheme of locally finite type to the category
of k-analytic spaces. As in the complex case one has GAGA-Theorems: for a k-scheme of locally finite
type & there is a functor F' +— F?" from coherent Oy-modules to coherent O yan-modules such that

1. if ¢ : Y — X is a proper morphism of schemes of locally finite type
(RP@. F)*™ o~ RPN (F™).

2. If X is proper, the functor F' — F*" is an equivalence of categories.



5 Topological properties
Let X be k-analytic space. Then X is

1. locally compact.

2. locally arcwise connected.

3. If X has a strictly semi-stable model or is the analytification of a quasi-projective variety, X retracts
on a finite CW-complex.
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