Introduction to Berkovich spaces

Florent Martin

These are notes from a mini-course I gave at the *Students' Workshop on Tropical and Non-Archimedean Geometry* at the University of Regensburg in August 2015.

1 Naive non-Archimedean manifolds

A field k is non-Archimedean if it is equipped with a complete non-Archimedean norm $|\cdot|: k \to \mathbb{R}_+$. This means:

- 1. $|x+y| \le \max\{|x|, |y|\}.$
- 2. $|xy| = |x| \cdot |y|$.
- 3. |x| = 0 if and only if x = 0.
- 4. $(k, |\cdot|)$ is complete.

The norm $|\cdot|$ induces a metric on k. We set

$$k^{\circ} = \{x \in k \mid |x| \le 1\} \qquad k^{\circ \circ} = \{x \in k \mid |x| < 1\} \qquad \tilde{k} = k^{\circ}/k^{\circ \circ}$$

Due to the ultrametric inequality, k° is open and closed. Examples of non-Archimedean fields are $\mathbb{Q}_p, \mathbb{F}_q((t)), \mathbb{C}((t)), \mathbb{C}_p := \widehat{\mathbb{Q}_p^{alg}}$, any field k with the trivial norm $(|x| = 1 \text{ if } x \neq 0 \text{ and } |0| = 0)...$ Note that \mathbb{C}_p is algebraically closed.

Like on \mathbb{R} and \mathbb{C} , there are power series on k. For instance:

1.
$$\frac{1}{1-X} = \sum_{n \ge 0} X^n \text{ converges for } |X| < 1.$$

2.
$$\exp(X) = \sum_{n \ge 0} \frac{X^n}{n!} \text{ converges for } \begin{cases} |X| < \frac{1}{p^{\frac{1}{p-1}}} & \text{in characteristic } (0,p), ex : \mathbb{Q}_p. \\ |X| < 1 & \text{in characteristic} (0,0), ex.\mathbb{C}((t)). \end{cases}$$

We will say that a map between two open subsets $U \subset k^m$, $V \subset k^n$ is naively holomorphic if it is locally given by convergent power series. We define naive k-analytic manifolds as topological spaces obtained by gluing open subsets of k^n along biholomorphic maps. A map between naive k-analytic manifolds is a naive holomorphic map if it is given locally by naive holomorphic maps between the open subsets of the charts.

This definition is pathological for the following reasons.

1. [Ser65] If k is a local field ($\mathbb{F}_q((t))$) or a finite extension of \mathbb{Q}_p), and d > 0 is a positive integer, there are only q - 1 (where $q = \text{Card}(\tilde{k})$) isomorphism classes of compact naive k-analytic manifolds of a given dimension d:

$$\{(k^{\circ})^d, (k^{\circ})^d \coprod (k^{\circ})^d, \dots, \coprod_{q-1} (k^{\circ})^d\}.$$

- 2. If k is algebraically closed, and n > 0 is an integer, there is no compact naive k-analytic manifold of dimension n. But:
 - (a) All nonempty open subsets of k^n are naively biholomorphic.
 - (b) If \mathcal{X} is a smooth k-algebraic variety of dimension n, the naive k-analytic manifold $\mathcal{X}^{\text{naive-an}}$ is biholomorphic to k^n .

What is the problem? There are too many open subsets, and k is totally disconnected. The closed unit disc is the disjoint union of its open unit balls:

$$k^{\circ} = \prod_{\lambda \in \tilde{k}} \{ x \in k^{\circ} \mid \tilde{x} = \lambda \}.$$

For instance

$$\mathbb{Z}_p = \coprod_{i=1\dots p-1} i + p\mathbb{Z}_p.$$

If $g: \tilde{k} \to k$ is any function, then $f: k^{\circ} \to k$ defined by $x \in k^{\circ} \mapsto g(\tilde{x})$ is a locally constant naive holomorphic function on k° which is not constant. In particular, f is not given by a power series converging on k° .

What is the solution? There are several approaches.

- 1. The theory of rigid spaces (Tate): the idea is to restrict to a class of admissible covers.
- 2. Add new points to the spaces: Berkovich spaces, adic spaces.
- 3. Use formal schemes over k° and inverse formal admissible blowing-ups (Raynaud).

4. ...

As in algebraic geometry, these approaches always consider points in the algebraic closure.

2 Affinoid algebras and spaces

2.1 Definitions

The Tate-algebra in n variables is

$$k\{T_1,\ldots,T_n\} := \{\sum_{\nu \in \mathbb{N}^n} a_{\nu} T^{\nu} \mid a_{\nu} \in k, \ a_{\nu} \xrightarrow{\nu_1 + \ldots + \nu_n \to \infty} 0\}.$$

These are the power series which converge on the closed unit polydisc. It is a UFD, a Noetherian and regular ring... We equip $k\{T_1, \ldots, T_n\}$ with a k-Banach algebra norm as as follows:

$$\|\sum_{\nu\in\mathbb{N}^n}a_{\nu}T^{\nu}\|=\max_{\nu}|a_{\nu}|.$$

If I is an ideal of $k\{T_1, \ldots, T_n\}$, we equip the quotient $\mathcal{A} := k\{T_1, \ldots, T_n\}/I$ with the residue norm: for $f \in \mathcal{A}$,

$$||f||_{\mathcal{A}} := \inf\{||g|| \mid g \in k\{T_1, \dots, T_n\}, f = g + I\}.$$

One can check that $(\mathcal{A}, \|\cdot\|_{\mathcal{A}})$ is a k-Banach algebra (this follows from the fact that ideals are closed in $k\{T_1, \ldots, T_n\}$). \mathcal{A} is called a strictly k-affinoid algebra.

More generally, we set

$$k\{r_1^{-1}T_1\dots,r_n^{-1}T_n\} := \{\sum_{\nu \in \mathbb{N}^n} a_{\nu}T^{\nu} \mid a_{\nu} \in k, \ |a_{\nu}|r^{\nu} \xrightarrow{\nu_1 + \dots + \nu_n \to \infty} 0\}.$$

These are the power series which converge on the closed polydisc of polyradius (r_1, \ldots, r_n) . We call quotients $k\{r_1^{-1}T_1\ldots, r_n^{-1}T_n\}$ k-affinoid algebras.

A morphism between the k-affinoid algebras \mathcal{A} and \mathcal{B} is a continuous morphism of k-algebras $\mathcal{A} \to \mathcal{B}$. A bounded multiplicative seminorm on $(\mathcal{A}, \|\cdot\|)$ is a map $|\cdot| : \mathcal{A} \to \mathbb{R}_+$ such that

- $1. \ |f+g| \le |f|+|g|.$
- 2. $|fg| = |f| \cdot |g|$.
- 3. |1| = 1.

4. There is a constant C > 0 such that for all $f \in \mathcal{A}$, $|f| \leq C ||f||$.

Definition 1. Let \mathcal{A} be a k-affinoid algebra. We set

 $X = \mathcal{M}(\mathcal{A}) := \{ bounded \ multiplicative \ seminorms \ |\cdot| : \mathcal{A} \to \mathbb{R}_+ \}$

equipped with the weakest topology making the maps

$$\begin{array}{ccc} \mathcal{M}(\mathcal{A}) & \to \mathbb{R} \\ |\cdot| & \mapsto & |f| \end{array}$$

continuous for all $f \in A$. We call X a k-affinoid space.

The k-affinoid spaces will serve as building blocks for k-analytic spaces.

Proposition 2. $\mathcal{M}(\mathcal{A})$ is a nonempty compact Hausdorff space.

Notation: we want to consider $X = \mathcal{M}(\mathcal{A})$ as a geometric space and $f \in \mathcal{A}$ as functions on X. So if $x : \mathcal{A} \to \mathbb{R}$ is an element of $\mathcal{M}(\mathcal{A})$, and $f \in \mathcal{A}$, we set

$$|f(x)| := x(f).$$

A basis of open subsets for the topology of $\mathcal{M}(\mathcal{A})$ is given by the sets

$$U = \{ x \in \mathcal{M}(\mathcal{A}) \mid \alpha_i < |f_i(x)| < \beta_i, \ i = 1 \dots n \}$$

where $f_i \in \mathcal{A}$ and $\alpha_i, \beta_i \in \mathbb{R}$.

Let $\varphi : \mathcal{A} \to \mathcal{B}$ be a morphism of k-affinoid algebra. It induces a continuous map $\varphi^* \mathcal{M}(\mathcal{B}) \to \mathcal{M}(\mathcal{A})$. If $x : \mathcal{B} \to \mathbb{R}$ is an element of $\mathcal{M}(\mathcal{B}), \varphi^*(x)$ is the seminorm

$$f \in \mathcal{A} \mapsto |\varphi(f)(x)|$$

which is obtained as the composition $\mathcal{A} \xrightarrow{\varphi} \mathcal{B} \xrightarrow{x} \mathbb{R}$. A morphism of k-affinoid spaces is a morphism of the form φ^* , so the category of k-affinoid spaces is equivalent to the opposite category of k-affinoid algebras.

Theorem 3. Nullstellensatz for strictly k-affinoid algebras. If \mathfrak{m} is a maximal ideal of a strictly k-affinoid algebra \mathcal{A} , then \mathcal{A}/\mathfrak{m} is a finite extension of k.

For any finite extension of non-trivially valued non-Archimedean fields $k \to k'$, there exists a unique non-Archimedean norm $|\cdot|_{k'}$ on k' extending the norm of k. So if \mathfrak{m} is a maximal ideal of \mathcal{A} , we have a canonical associated norm $|\cdot|_{\mathfrak{m}}$ on \mathcal{A}/\mathfrak{m} and we can associate an element of $\mathcal{M}(\mathcal{A})$

$$\mathcal{A} \to \mathcal{A}/\mathfrak{m} \xrightarrow{|\cdot|_\mathfrak{m}} \mathbb{R}$$

This implies that one has a correspondence between maximal ideals of $k\{T_1, \ldots, T_n\}$ and the orbits of $((k^{\text{alg}})^{\circ})^n$ modulo $\text{Gal}(k^{\text{alg}}/k)$. More generally, if $\mathcal{A} = k\{T_1, \ldots, T_n\}/(f_1, \ldots, f_m)$ one has a correspondence between maximal ideals of \mathcal{A} and the set of points $x \in ((k^{\text{alg}})^{\circ})^n$ such that $f_i(x) = 0$ for all i modulo $\text{Gal}(k^{\text{alg}}/k)$.

2.2 Example of the unit disc

Let us assume for this part that k is algebraically closed. We set

$$B = \mathcal{M}(k\{T\})$$

and call it the closed unit disc. If $c \in k^{\circ}$ and $r \in [0, 1]$, we denote the closed disc of center c and radius r by $B(c = 1) = (c = 1)^{\circ} + (c = 1)^{\circ}$

$$B(c,r) := \{ x \in k^{\circ} \mid |x - c| \le r \}.$$

We want to classify the points of B.

Type 1. If $c \in k^{\circ}$ then the multiplicative seminorm

$$f \in k\{T\} \mapsto |f(c)|$$

defines a point of $B = \mathcal{M}(k\{T\})$. These are in correspondence with maximal ideals of $k\{T\}$ and are called points of type (1).

Type 2 and 3. Let us first remark that the Banach norm on $k\{T\}$ given by

$$f = \sum_{n \in \mathbb{N}} a_n T^n \mapsto \|f\| = \max_{n \in \mathbb{N}} |a_n|$$

is multiplicative. In addition $||f|| = \max_{z \in D(0,1)} |f(z)|$. More generally if $r \in]0, 1]$ let us set

onorany n. . Clo, 1] 100 as soc

$$|\cdot|_{D(0,r)} : f = \sum a_n T^n \mapsto |f|_{D(0,r)} = \max |a_n| r^n$$

Then $|\cdot|_{D(0,r)} \in B$, i.e. it is a multiplicative seminorm. In addition, it satisfies for all $f \in k\{T\}$

$$|f|_{D(0,r)} = \max_{z \in D(0,r)} |f(z)|.$$

More generally again, if If $c \in k^{\circ}$ and $r \in [0, 1]$ we define

$$|\cdot|_{D(c,r)} : f = \sum a_n T^n \mapsto |f|_{D(c,r)} = \max |a_n| r^n.$$

Then $|\cdot|_{D(c,r)} \in B$, i.e. it is a multiplicative seminorm. In addition, it satisfies for all $f \in k\{T\}$

$$|f|_{D(c,r)} = \max_{z \in D(c,r)} |f(z)|$$

When $r \in \sqrt{|k^{\times}|}$, $|\cdot|_{D(c,r)}$ is called a type of point (2) of B, and when $r \notin \sqrt{|k^{\times}|}$, $|\cdot|_{D(c,r)}$ is called a point of type (3).

Type 4. The field k is called maximally complete if every family of embedded nonempty discs has a non empty intersection. For instance local fields are maximally complete, but one can prove that \mathbb{C}_p is not maximally complete.

Let us assume that k is not maximally complete, this means that one can find a positive real number $r \in]0, 1[$, and for each $\rho \in]r, 1]$, an element $c_{\rho} \in k^{\circ}$ such that

$$\mathcal{E} := \{ D(c_{\rho}, \rho), \ \rho \in]r, 1] \}$$

is a family of embedded discs with empty intersection. We then set

$$|\cdot|_{\mathcal{E}}: f \in k\{T\} \mapsto \inf_{D \in \mathcal{E}} |f|_D.$$

One checks that $|\cdot|_{\mathcal{E}}$ defines a multiplicative seminorm. So $|\cdot|_{\mathcal{E}}$ is an element of *B*. The assumption that the family \mathcal{E} has empty intersection implies that $|\cdot|_{\mathcal{E}}$ is not of type (1), (2) or (3).

Fact 4. Any point of $B = \mathcal{M}(k\{T\})$ is of type (1)-(4) (cf. [Ber90, 1.4.4]).

Make a picture, and draw lines. Check that the map

$$r \in [0,1] \mapsto |\cdot|_{D(c,r)} \in B$$

induces a homeomorphism between [0, 1] and its image.

Proposition 5. $B = \mathcal{M}(k\{T\})$ is arcwise-connected.

If $\lambda \in k^{\circ}$, lets us set

$$B_{\tilde{\lambda}}^{+} = \{ x \in B \mid |(T - \lambda)(x)| < 1 \}$$

This depends only on the reduction $\tilde{\lambda} \in \tilde{k}$. Then $B_{\tilde{\lambda}}^+$ are a disjoint family of open subsets of B, but now, $B_{\tilde{\lambda}}^+$ is not closed, and in addition

$$\coprod_{\tilde{\lambda}\in\tilde{k}}B^+_{\tilde{\lambda}}\subsetneq B$$

Indeed there is just one point missing: $|\cdot|_{D(0,1)}$.

3 Gluing of affinoid spaces

3.1 Example of an annulus

Let $\pi \in k$ such that $0 < |\pi| < 1$ and let us consider the annulus

$$U = \{ x \in B = \mathcal{M}(k\{T\}) \mid |\pi| \le |T(x)| \le 1 \}$$

Try to make two drawings of U.

We want to see U as a k-affinoid space inside B. What should be the set of analytic functions on U?

$$\mathcal{A}_U = \{ f = \sum_{n \in \mathbb{Z}} a_n T^n \mid |a_n| \xrightarrow[n \to \infty]{} 0 \quad |a_{-n} \pi^{-n}| \xrightarrow[n \to \infty]{} 0 \}.$$

If one set $S := \frac{\pi}{T}$,

$$\mathcal{A}_U \simeq k\{S, T\}/(ST - \pi).$$

Fact 6. The morphism

$$k\{T\} \rightarrow k\{S,T\}/(ST-\pi)$$

induces a homeomorphism between $\mathcal{M}(k\{S,T\}/(ST-\pi))$ and U through the following morphism of k-affinoid spaces

 $\mathcal{M}(k\{S,T\}/(ST-\pi)) \to B.$

3.2 Affinoid domains

Definition 7. Let $X = \mathcal{M}(\mathcal{A})$ be a k-affinoid space. A closed subset $U \subset X$ is an affinoid domain of X is there exists a k-affinoid algebra \mathcal{A}_U and a morphism of k-affinoid algebras $\mathcal{A} \to \mathcal{A}_U$ such that

1. $\varphi^* : \mathcal{M}(\mathcal{A}_U) \to X$ induces a homeomorphism between $\mathcal{M}(\mathcal{A}_U)$ and U.

2. For any morphism of k-affinoid space $f: Y = \mathcal{M}(\mathcal{B}) \to X = \mathcal{M}(\mathcal{A})$ such that $f(Y) \subset U$, there exists a unique morphism of k-affinoid spaces $Y \to \mathcal{M}(\mathcal{A}_U)$ making the following diagram commutative:

Here is a list of examples.

- 1. In the example of subsection 3.1, U is an affinoid domain of B.
- 2. If $f_1, \ldots, f_n \in \mathcal{A}$

$$U = \{x \in X \mid |f_i(x)| \le 1, \ i = 1 \dots n\}$$

is an affinoid domain, called a Weierstrass domain, and

$$\mathcal{A}_U \simeq \mathcal{A}\{T_1, \dots, T_n\}/(f_i - T_i)_{i=1\dots, n}.$$

3. If $f_1, \ldots, f_n, g \in \mathcal{A}$ generate the unit ideal of \mathcal{A} ,

 $U = \{ x \in X \mid |f_i(x)| \le |g(x)|, \ i = 1 \dots n \}$

is an affinoid domain, called a rational domain, and

$$\mathcal{A}_U \simeq \mathcal{A}\{T_1, \dots, T_n\}/(f_i - gT_i)_{i=1\dots, n}.$$

Lemma 8. If U and V are affinoid domains of X so is $U \cap V$.

Theorem 9 (Tate's acyclicity Theorem). Let $X = \mathcal{M}(\mathcal{A})$ be a k-affinoid space and let U_1, \ldots, U_n be a finite cover of X by affinoid domains. Then

$$\mathcal{A}
ightarrow \prod_{i=1...n} \mathcal{A}_{U_i}
ightarrow \prod_{1 \leq i < j \leq n} \mathcal{A}_{U_i \cap U_j}$$

is exact.

3.3 Gluing, informal definition

We only sketch the global definition of a k-analytic spaces. For precise definitions, see [Ber93, section 1].

A k-analytic space is a locally Hausdorff topological space X covered by a nice family of compact subsets $\{U_i\}$ (the U_i 's should be a net of X, cf. [Ber93, section 1]) such that each U_i should be identified with a k-affinoid space, and such that whenever $U_i \subset U_j$, U_i should be identified with an affinoid domain of U_i .

A morphism between two k-analytic spaces is roughly a continuous map $f: X \to Y$ such that whenever $U \subset X$ and $V \subset Y$ are affinoid domains with $f(U) \subset V$, then $f|_U: U \to V$ is a morphism of k-affinoid spaces.

4 Analytification and GAGA

4.1 The affine space

We define

 $(\mathbb{A}_k^n)^{\mathrm{an}} = \{ \text{multiplicative seminorms } | \cdot | : k[T_1, \dots, T_n] \to \mathbb{R}_+ \text{ extending the norm of } k \}$

with the weakest topology such that for all $P \in k[T_1, \ldots, T_n]$, the map $(\mathbb{A}^n_k)^{\mathrm{an}} \to \mathbb{R}_+$, defined by $|\cdot| \mapsto |P|$ is continuous.

For each r > 0, the inclusion $k[T_1, \ldots, T_n] \hookrightarrow k\{r^{-1}T_1, \ldots, r^{-1}T_n\}$ induces a map

$$\mathcal{M}(k\{r^{-1}T_1,\ldots,r^{-1}T_n\}) \to (\mathbb{A}_k^n)^{\mathrm{an}}$$

which induces a homeomorphism between $\mathcal{M}(k\{r^{-1}T_1,\ldots,r^{-1}T_n\})$ and its image

$$B_r^n = \{ x \in (\mathbb{A}_k^n)^{\mathrm{an}} \mid |T_i(x)| \le r, \forall i \}.$$

For all r < s, B_r^n is an affinoid domain of B_s^n and this equip $(\mathbb{A}_k^n)^{\mathrm{an}}$ with the structure of a k-analytic space.

4.2 Algebraic *k*-varieties

Let \mathcal{X} be an affine k-variety given by $\mathcal{X} = V(I)$ for some ideal $I \subset k[T_1, \ldots, T_n]$. For r > 0 we set $X_r := \mathcal{M}(k\{r^{-1}T_1, \ldots, r^{-1}T_n\}/I)$. It can be identified with a closed subset of

 $\mathcal{X}^{\mathrm{an}} := \{ \text{multiplicative seminorms } | \cdot | : k[T_1, \dots, T_n] / I \to \mathbb{R}_+ \text{ extending the norm of } k \}$

equipped with the topology inherited from $(\mathbb{A}_k^n)^{\mathrm{an}}$, i.e. the weakest topology such that for all $P \in k[T_1, \ldots, T_n]/I$, the map $\mathcal{X}^{\mathrm{an}} \to \mathbb{R}_+$, defined by $|\cdot| \mapsto |P|$ is continuous. For r < s, X_r is identified with an affinoid domain of X_s , and this equips $\mathcal{X}^{\mathrm{an}}$ with a structure of k-analytic space.

Example 10. We have a homeomorphism

$$(\mathbb{G}_{m,k}^n)^{an} \simeq \{ multiplicative \ seminorms \ | \cdot | : k[T_1, T_1^{-1}, \dots, T_n, T_n^{-1}] \to \mathbb{R}_+ \ extending \ the \ norm \ of \ k \}.$$

The continuous map

$$\begin{array}{cccc} (\mathbb{G}_{m,k}^n)^{an} & \to & \mathbb{R}^n \\ x & \mapsto & (\log |T_i(x)|)_{i=1\dots n} \end{array}$$

is continuous. For $r_1, \ldots, r_n \in (\mathbb{R}^*_+)^n$, the seminorm

$$\sum_{\nu \in \mathbb{Z}^n} \mapsto \max_{\nu \in \mathbb{Z}^n} |a_{\nu}| r_1^{\nu_1} \dots r_n^{\nu_n}$$

is a continuous section of the above map.

When \mathcal{X} is a k-scheme of finite type, one can glue the above construction and define a k-analytic space $\mathcal{X}^{\mathrm{an}}$, which defines a functor $\mathcal{X} \to \mathcal{X}^{\mathrm{an}}$ from the category of k-scheme of locally finite type to the category of k-analytic spaces. As in the complex case one has GAGA-Theorems: for a k-scheme of locally finite type \mathcal{X} there is a functor $F \mapsto F^{\mathrm{an}}$ from coherent $\mathcal{O}_{\mathcal{X}}$ -modules to coherent $\mathcal{O}_{\mathcal{X}^{\mathrm{an}}}$ -modules such that

1. if $\varphi : \mathcal{Y} \to \mathcal{X}$ is a proper morphism of schemes of locally finite type

$$(R^p \varphi_* F)^{\mathrm{an}} \simeq R^p \varphi_*^{\mathrm{an}}(F^{\mathrm{an}}).$$

2. If \mathcal{X} is proper, the functor $F \to F^{\mathrm{an}}$ is an equivalence of categories.

5 Topological properties

Let X be k-analytic space. Then X is

- 1. locally compact.
- 2. locally arcwise connected.
- 3. If X has a strictly semi-stable model or is the analytification of a quasi-projective variety, X retracts on a finite CW-complex.

References

- [Ber90] V.G. Berkovich. Spectral theory and analytic geometry over non-Archimedean fields. Amer Mathematical Society, 1990.
- [Ber93] V.G. Berkovich. Etale cohomology for non-Archimedean analytic spaces. Publications Mathématiques de l'IHÉS, 78(1):5–161, 1993.
- [Ser65] Jean-Pierre Serre. Classification des variétés analytiques p-adiques compactes. Topology, 3:409–412, 1965.