
Introduction to Berkovich spaces

Florent Martin

These are notes from a mini-course I gave at the Students’ Workshop on Tropical and Non-Archimedean
Geometry at the University of Regensburg in August 2015.

1 Naive non-Archimedean manifolds
A field k is non-Archimedean if it is equipped with a complete non-Archimedean norm | · | : k → R+. This
means:

1. |x+ y| ≤ max{|x|, |y|}.

2. |xy| = |x| · |y|.

3. |x| = 0 if and only if x = 0.

4. (k, | · |) is complete.

The norm | · | induces a metric on k. We set

k◦ = {x ∈ k
∣∣ |x| ≤ 1} k◦◦ = {x ∈ k

∣∣ |x| < 1} k̃ = k◦/k◦◦

Due to the ultrametric inequality, k◦ is open and closed. Examples of non-Archimedean fields are

Qp,Fq((t)),C((t)),Cp := Q̂alg
p , any field k with the trivial norm (|x| = 1 if x 6= 0 and |0| = 0)... Note that

Cp is algebraically closed.
Like on R and C, there are power series on k. For instance:

1. 1
1−X =

∑
n≥0X

n converges for |X| < 1.

2. exp(X) =
∑
n≥0

Xn

n! converges for

|X| <
1

p
1

p−1
in characteristic (0, p), ex : Qp.

|X| < 1 in characteristic(0, 0), ex.C((t)).

We will say that a map between two open subsets U ⊂ km, V ⊂ kn is naively holomorphic if it is locally
given by convergent power series. We define naive k-analytic manifolds as topological spaces obtained
by gluing open subsets of kn along biholomorphic maps. A map between naive k-analytic manifolds is a
naive holomorphic map if it is given locally by naive holomorphic maps between the open subsets of the
charts.

This definition is pathological for the following reasons.

1. [Ser65] If k is a local field (Fq((t)) or a finite extension of Qp), and d > 0 is a positive integer, there
are only q − 1 (where q = Card(k̃)) isomorphism classes of compact naive k-analytic manifolds of a
given dimension d:

{(k◦)d, (k◦)d
∐

(k◦)d, . . . ,
∐
q−1

(k◦)d}.
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2. If k is algebraically closed, and n > 0 is an integer, there is no compact naive k-analytic manifold of
dimension n. But:

(a) All nonempty open subsets of kn are naively biholomorphic.

(b) If X is a smooth k-algebraic variety of dimension n, the naive k-analytic manifold X naive-an is
biholomorphic to kn.

What is the problem? There are too many open subsets, and k is totally disconnected. The closed
unit disc is the disjoint union of its open unit balls:

k◦ =
∐
λ∈k̃

{x ∈ k◦
∣∣ x̃ = λ}.

For instance
Zp =

∐
i=1...p−1

i+ pZp.

If g : k̃ → k is any function, then f : k◦ → k defined by x ∈ k◦ 7→ g(x̃) is a locally constant naive
holomorphic function on k◦ which is not constant. In particular, f is not given by a power series converging
on k◦.

What is the solution? There are several approaches.

1. The theory of rigid spaces (Tate): the idea is to restrict to a class of admissible covers.

2. Add new points to the spaces: Berkovich spaces, adic spaces.

3. Use formal schemes over k◦ and inverse formal admissible blowing-ups (Raynaud).

4. ...

As in algebraic geometry, these approaches always consider points in the algebraic closure.

2 Affinoid algebras and spaces

2.1 Definitions
The Tate-algebra in n variables is

k{T1, . . . , Tn} := {
∑
ν∈Nn

aνT
ν
∣∣ aν ∈ k, aν −−−−−−−−→

ν1+...νn→∞
0}.

These are the power series which converge on the closed unit polydisc. It is a UFD, a Noetherian and
regular ring... We equip k{T1, . . . , Tn} with a k-Banach algebra norm as as follows:

‖
∑
ν∈Nn

aνT
ν‖ = max

ν
|aν |.

If I is an ideal of k{T1, . . . , Tn}, we equip the quotient A := k{T1, . . . , Tn}/I with the residue norm: for
f ∈ A,

‖f‖A := inf{‖g‖
∣∣ g ∈ k{T1, . . . , Tn}, f = g + I}.

One can check that (A, ‖ · ‖A) is a k-Banach algebra (this follows from the fact that ideals are closed in
k{T1, . . . , Tn}). A is called a strictly k-affinoid algebra.
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More generally, we set

k{r−11 T1 . . . , r
−1
n Tn} := {

∑
ν∈Nn

aνT
ν
∣∣ aν ∈ k, |aν |rν −−−−−−−−→

ν1+...νn→∞
0}.

These are the power series which converge on the closed polydisc of polyradius (r1, . . . , rn). We call
quotients k{r−11 T1 . . . , r

−1
n Tn} k-affinoid algebras.

A morphism between the k-affinoid algebras A and B is a continuous morphism of k-algebras A → B.
A bounded multiplicative seminorm on (A, ‖ · ‖) is a map | · | : A → R+ such that

1. |f + g| ≤ |f |+ |g|.

2. |fg| = |f | · |g|.

3. |1| = 1.

4. There is a constant C > 0 such that for all f ∈ A, |f | ≤ C‖f‖.
Definition 1. Let A be a k-affinoid algebra. We set

X =M(A) := {bounded multiplicative seminorms | · | : A → R+}

equipped with the weakest topology making the maps

M(A) → R
| · | 7→ |f |

continuous for all f ∈ A. We call X a k-affinoid space.

The k-affinoid spaces will serve as building blocks for k-analytic spaces.

Proposition 2. M(A) is a nonempty compact Hausdorff space.

Notation: we want to consider X =M(A) as a geometric space and f ∈ A as functions on X. So if
x : A → R is an element ofM(A), and f ∈ A, we set

|f(x)| := x(f).

A basis of open subsets for the topology ofM(A) is given by the sets

U = {x ∈M(A)
∣∣ αi < |fi(x)| < βi, i = 1 . . . n}

where fi ∈ A and αi, βi ∈ R.
Let ϕ : A → B be a morphism of k-affinoid algebra. It induces a continuous map ϕ∗M(B)→M(A).

If x : B → R is an element ofM(B), ϕ∗(x) is the seminorm

f ∈ A 7→ |ϕ(f)(x)|

which is obtained as the composition A ϕ−→ B x−→ R. A morphism of k-affinoid spaces is a morphism of the
form ϕ∗, so the category of k-affinoid spaces is equivalent to the opposite category of k-affinoid algebras.

Theorem 3. Nullstellensatz for strictly k-affinoid algebras. If m is a maximal ideal of a strictly
k-affinoid algebra A, then A/m is a finite extension of k.

For any finite extension of non-trivially valued non-Archimedean fields k → k′, there exists a unique
non-Archimedean norm | · |k′ on k′ extending the norm of k. So if m is a maximal ideal of A, we have a
canonical associated norm | · |m on A/m and we can associate an element ofM(A)

A → A/m |·|m−−→ R.

This implies that one has a correspondence between maximal ideals of k{T1, . . . , Tn} and the orbits of
((kalg)◦)n modulo Gal(kalg/k). More generally, if A = k{T1, . . . , Tn}/(f1, . . . , fm) one has a correspon-
dence between maximal ideals of A and the set of points x ∈ ((kalg)◦)n such that fi(x) = 0 for all i modulo
Gal(kalg/k).
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2.2 Example of the unit disc
Let us assume for this part that k is algebraically closed. We set

B =M(k{T})

and call it the closed unit disc. If c ∈ k◦ and r ∈ [0, 1], we denote the closed disc of center c and radius r
by

B(c, r) := {x ∈ k◦
∣∣ |x− c| ≤ r}.

We want to classify the points of B.

Type 1. If c ∈ k◦ then the multiplicative seminorm

f ∈ k{T} 7→ |f(c)|

defines a point of B =M(k{T}). These are in correspondence with maximal ideals of k{T} and are
called points of type (1).

Type 2 and 3. Let us first remark that the Banach norm on k{T} given by

f =
∑
n∈N

anT
n 7→ ‖f‖ = max

n∈N
|an|

is multiplicative. In addition ‖f‖ = maxz∈D(0,1) |f(z)|.
More generally if r ∈]0, 1] let us set

| · |D(0,r) : f =
∑

anT
n 7→ |f |D(0,r) = max |an|rn.

Then | · |D(0,r) ∈ B, i.e. it is a multiplicative seminorm. In addition, it satisfies for all f ∈ k{T}

|f |D(0,r) = max
z∈D(0,r)

|f(z)|.

More generally again, if If c ∈ k◦ and r ∈ [0, 1] we define

| · |D(c,r) : f =
∑

anT
n 7→ |f |D(c,r) = max |an|rn.

Then | · |D(c,r) ∈ B, i.e. it is a multiplicative seminorm. In addition, it satisfies for all f ∈ k{T}

|f |D(c,r) = max
z∈D(c,r)

|f(z)|.

When r ∈
√
|k×|, | · |D(c,r) is called a type of point (2) of B, and when r /∈

√
|k×|, | · |D(c,r) is called

a point of type (3).

Type 4. The field k is called maximally complete if every family of embedded nonempty discs has a non
empty intersection. For instance local fields are maximally complete, but one can prove that Cp is
not maximally complete.
Let us assume that k is not maximally complete, this means that one can find a positive real number
r ∈]0, 1[, and for each ρ ∈]r, 1], an element cρ ∈ k◦ such that

E := {D(cρ, ρ), ρ ∈]r, 1]}

is a family of embedded discs with empty intersection. We then set

| · |E : f ∈ k{T} 7→ inf
D∈E
|f |D.

One checks that | · |E defines a multiplicative seminorm. So | · |E is an element of B. The assumption
that the family E has empty intersection implies that | · |E is not of type (1), (2) or (3).
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Fact 4. Any point of B =M(k{T}) is of type (1)–(4) (cf. [Ber90, 1.4.4]).

Make a picture, and draw lines. Check that the map

r ∈ [0, 1] 7→ | · |D(c,r) ∈ B

induces a homeomorphism between [0, 1] and its image.

Proposition 5. B =M(k{T}) is arcwise-connected.

If λ ∈ k◦, lets us set
B+

λ̃
= {x ∈ B

∣∣ |(T − λ)(x)| < 1}.

This depends only on the reduction λ̃ ∈ k̃. Then B+

λ̃
are a disjoint family of open subsets of B, but now,

B+

λ̃
is not closed, and in addition ∐

λ̃∈k̃

B+

λ̃
( B.

Indeed there is just one point missing: | · |D(0,1).

3 Gluing of affinoid spaces

3.1 Example of an annulus
Let π ∈ k such that 0 < |π| < 1 and let us consider the annulus

U = {x ∈ B =M(k{T})
∣∣ |π| ≤ |T (x)| ≤ 1}.

Try to make two drawings of U .

We want to see U as a k-affinoid space inside B. What should be the set of analytic functions on U?

AU = {f =
∑
n∈Z

anT
n
∣∣ |an| −−−−→

n→∞
0 |a−nπ−n| −−−−→

n→∞
0}.

If one set S := π
T ,

AU ' k{S, T}/(ST − π).

Fact 6. The morphism
k{T} → k{S, T}/(ST − π)

induces a homeomorphism between M(k{S, T}/(ST − π)) and U through the following morphism of k-
affinoid spaces

M(k{S, T}/(ST − π))→ B.

3.2 Affinoid domains
Definition 7. Let X =M(A) be a k-affinoid space. A closed subset U ⊂ X is an affinoid domain of X
is there exists a k-affinoid algebra AU and a morphism of k-affinoid algebras A → AU such that

1. ϕ∗ :M(AU )→ X induces a homeomorphism betweenM(AU ) and U .
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2. For any morphism of k-affinoid space f : Y =M(B)→ X =M(A) such that f(Y ) ⊂ U , there exists
a unique morphism of k-affinoid spaces Y →M(AU ) making the following diagram commutative:

M(AU ) // X

Y

f

OOcc

Here is a list of examples.

1. In the example of subsection 3.1, U is an affinoid domain of B.

2. If f1, . . . , fn ∈ A
U = {x ∈ X

∣∣ |fi(x)| ≤ 1, i = 1 . . . n}

is an affinoid domain, called a Weierstrass domain, and

AU ' A{T1, . . . , Tn}/(fi − Ti)i=1...,n.

3. If f1, . . . , fn, g ∈ A generate the unit ideal of A,

U = {x ∈ X
∣∣ |fi(x)| ≤ |g(x)|, i = 1 . . . n}

is an affinoid domain, called a rational domain, and

AU ' A{T1, . . . , Tn}/(fi − gTi)i=1...,n.

Lemma 8. If U and V are affinoid domains of X so is U ∩ V .

Theorem 9 (Tate’s acyclicity Theorem). Let X =M(A) be a k-affinoid space and let U1, . . . , Un be
a finite cover of X by affinoid domains. Then

A →
∏

i=1...n

AUi
→

∏
1≤i<j≤n

AUi∩Uj

is exact.

3.3 Gluing, informal definition
We only sketch the global definition of a k-analytic spaces. For precise definitions, see [Ber93, section 1].

A k-analytic space is a locally Hausdorff topological space X covered by a nice family of compact
subsets {Ui} (the Ui’s should be a net of X, cf. [Ber93, section 1]) such that each Ui should be identified
with a k-affinoid space, and such that whenever Ui ⊂ Uj , Ui should be identified with an affinoid domain
of Uj .

A morphism between two k-analytic spaces is roughly a continuous map f : X → Y such that whenever
U ⊂ X and V ⊂ Y are affinoid domains with f(U) ⊂ V , then f|U : U → V is a morphism of k-affinoid
spaces.
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4 Analytification and GAGA

4.1 The affine space
We define

(Ank )an = {multiplicative seminorms | · | : k[T1, . . . , Tn]→ R+ extending the norm of k}

with the weakest topology such that for all P ∈ k[T1, . . . , Tn], the map (Ank )an → R+, defined by | · | 7→ |P |
is continuous.

For each r > 0, the inclusion k[T1, . . . , Tn] ↪→ k{r−1T1, . . . , r−1Tn} induces a map

M(k{r−1T1, . . . , r−1Tn})→ (Ank )an

which induces a homeomorphism betweenM(k{r−1T1, . . . , r−1Tn}) and its image

Bnr = {x ∈ (Ank )an
∣∣ |Ti(x)| ≤ r, ∀i}.

For all r < s, Bnr is an affinoid domain of Bns and this equip (Ank )an with the structure of a k-analytic
space.

4.2 Algebraic k-varieties
Let X be an affine k-variety given by X = V (I) for some ideal I ⊂ k[T1, . . . , Tn]. For r > 0 we set
Xr :=M(k{r−1T1, . . . , r−1Tn}/I). It can be identified with a closed subset of

X an := {multiplicative seminorms | · | : k[T1, . . . , Tn]/I → R+ extending the norm of k}

equipped with the topology inherited from (Ank )an, i.e. the weakest topology such that for all P ∈
k[T1, . . . , Tn]/I, the map X an → R+, defined by | · | 7→ |P | is continuous. For r < s, Xr is identified with
an affinoid domain of Xs, and this equips X an with a structure of k-analytic space.

Example 10. We have a homeomorphism

(Gnm,k)an ' {multiplicative seminorms | · | : k[T1, T−11 , . . . , Tn, T
−1
n ]→ R+ extending the norm of k}.

The continuous map
(Gnm,k)an → Rn

x 7→ (log |Ti(x)|)i=1...n

is continuous. For r1, . . . , rn ∈ (R∗+)n, the seminorm∑
ν∈Zn

7→ max
ν∈Zn

|aν |rν11 . . . rνnn

is a continuous section of the above map.

When X is a k-scheme of finite type, one can glue the above construction and define a k-analytic space
X an, which defines a functor X → X an from the category of k-scheme of locally finite type to the category
of k-analytic spaces. As in the complex case one has GAGA-Theorems: for a k-scheme of locally finite
type X there is a functor F 7→ F an from coherent OX -modules to coherent OX an -modules such that

1. if ϕ : Y → X is a proper morphism of schemes of locally finite type

(Rpϕ∗F )
an ' Rpϕan

∗ (F an).

2. If X is proper, the functor F → F an is an equivalence of categories.
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5 Topological properties
Let X be k-analytic space. Then X is

1. locally compact.

2. locally arcwise connected.

3. If X has a strictly semi-stable model or is the analytification of a quasi-projective variety, X retracts
on a finite CW -complex.
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